Skip to main content

Application of the Metabolic Modeling Pipeline in KBase to Categorize Reactions, Predict Essential Genes, and Predict Pathways in an Isolate Genome

Part of the Methods in Molecular Biology book series (MIMB,volume 2349)

Abstract

The DOE Systems Biology Knowledgebase (KBase) platform offers a range of powerful tools for the reconstruction, refinement, and analysis of genome-scale metabolic models built from microbial isolate genomes. In this chapter, we describe and demonstrate these tools in action with an analysis of isoprene production in the Bacillus subtilis DSM genome. Two different methods are applied to build initial metabolic models for the DSM genome, then the models are gapfilled in three different growth conditions. Next, flux balance analysis (FBA) and flux variability analysis (FVA) techniques are applied to both study the growth of these models in minimal media and classify reactions within each model based on essentiality and functionality. The models are applied with the FBA method to predict essential genes, which are then compared to an updated list of essential genes obtained for B. subtilis 168, a very similar strain to the DSM isolate. The models are also applied to simulate Biolog growth conditions, and these results are compared with Biolog data collected for B. subtilis 168. Finally, the DSM metabolic models are applied to explore the pathways and genes responsible for producing isoprene in this strain. These studies demonstrate the accuracy and utility of models generated from the KBase pipelines, as well as exploring the tools available for analyzing these models.

Key words

  • Metabolic models
  • Draft models
  • Genome-scale reconstruction
  • Flux balance analysis
  • DOE knowledgebase

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kumar VS, Maranas CD (2009) GrowMatch: an automated method for reconciling in silico/in vivo growth predictions. PLoS Comput Biol 5:e1000308. https://doi.org/10.1371/journal.pcbi.1000308

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  2. Goldford JE, Lu N, Bajić D et al (2018) Emergent simplicity in microbial community assembly. Science 361:469–474. https://doi.org/10.1126/science.aat1168

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pharkya P (2004) OptStrain: a computational framework for redesign of microbial production systems. Genome Res 14:2367–2376. https://doi.org/10.1101/gr.2872004

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  4. Monk JM, Koza A, Campodonico MA et al (2016) Multi-omics quantification of species variation of Escherichia coli links molecular features with strain phenotypes. Cell Syst 3:238–251.e12. https://doi.org/10.1016/j.cels.2016.08.013

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  5. Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28:245–248. https://doi.org/10.1038/nbt.1614

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  6. Henry CS, Broadbelt LJ, Hatzimanikatis V (2007) Thermodynamics-based metabolic flux analysis. Biophys J 92:1792–1805. https://doi.org/10.1529/biophysj.106.093138

    CrossRef  CAS  PubMed  Google Scholar 

  7. Tournier L, Goelzer A, Fromion V (2017) Optimal resource allocation enables mathematical exploration of microbial metabolic configurations. J Math Biol 75:1349–1380. https://doi.org/10.1007/s00285-017-1118-5

    CrossRef  PubMed  Google Scholar 

  8. Covert MW, Palsson BØ (2002) Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J Biol Chem 277:28058–28064. https://doi.org/10.1074/jbc.M201691200

    CrossRef  CAS  PubMed  Google Scholar 

  9. Arkin AP, Cottingham RW, Henry CS et al (2018) KBase: the United States Department of Energy Systems Biology Knowledgebase. Nat Biotechnol 36:566–569. https://doi.org/10.1038/nbt.4163

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  10. Henry CS, Zinner JF, Cohoon MP, Stevens RL (2009) iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations. Genome Biol 10:R69. https://doi.org/10.1186/gb-2009-10-6-r69

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thiele I, Palsson BØ (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5:93–121. https://doi.org/10.1038/nprot.2009.203

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  12. Henry CS, DeJongh M, Best AA et al (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28:977–982. https://doi.org/10.1038/nbt.1672

    CrossRef  CAS  PubMed  Google Scholar 

  13. Faria JP, Khazaei T, Edirisinghe JN et al (2016) Constructing and analyzing metabolic flux models of microbial communities. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and lipid microbiology protocols. Springer, Berlin, pp 247–273

    CrossRef  Google Scholar 

  14. Aziz RK, Bartels D, Best AA et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wattam AR, Brettin T, Davis JJ et al (2018) Assembly, annotation, and comparative genomics in PATRIC, the all bacterial bioinformatics resource center. In: Setubal JC, Stoye J, Stadler PF (eds) Comparative genomics. Springer, New York, NY, pp 79–101

    CrossRef  Google Scholar 

  16. Overbeek R, Olson R, Pusch GD et al (2014) The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42:D206–D214. https://doi.org/10.1093/nar/gkt1226

    CrossRef  CAS  PubMed  Google Scholar 

  17. Satish Kumar V, Dasika MS, Maranas CD (2007) Optimization based automated curation of metabolic reconstructions. BMC Bioinformatics 8:212. https://doi.org/10.1186/1471-2105-8-212

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reed JL, Patel TR, Chen KH et al (2006) Systems approach to refining genome annotation. Proc Natl Acad Sci 103:17480–17484. https://doi.org/10.1073/pnas.0603364103

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dreyfuss JM, Zucker JD, Hood HM et al (2013) Reconstruction and validation of a genome-scale metabolic model for the filamentous fungus neurospora crassa using FARM. PLoS Comput Biol 9:e1003126. https://doi.org/10.1371/journal.pcbi.1003126

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  20. Latendresse M (2014) Efficiently gap-filling reaction networks. BMC Bioinformatics 15:225. https://doi.org/10.1186/1471-2105-15-225

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5:264–276

    CrossRef  CAS  Google Scholar 

  22. Koo B-M, Kritikos G, Farelli JD et al (2017) Construction and analysis of two genome-scale deletion libraries for Bacillus subtilis. Cell Syst 4:291–305.e7. https://doi.org/10.1016/j.cels.2016.12.013

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  23. Henry CS, Rotman E, Lathem WW et al (2017) Generation and Validation of the iKp1289 metabolic model for Klebsiella pneumoniae KPPR1. J Infect Dis 215:S37–S43. https://doi.org/10.1093/infdis/jiw465

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bochner BR (2001) Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res 11:1246–1255. https://doi.org/10.1101/gr.186501

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  25. Henry CS, Bernstein HC, Weisenhorn P et al (2016) Microbial community metabolic modeling: a community data-driven network reconstruction: community data-driven metabolic network modeling. J Cell Physiol 231:2339–2345. https://doi.org/10.1002/jcp.25428

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  26. Song H-S, Nelson WC, Lee J-Y et al (2018) Metabolic network modeling for computer-aided design of microbial interactions. In: Chang HN (ed) Emerging areas in bioengineering. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 793–801

    CrossRef  Google Scholar 

  27. Heirendt L, Arreckx S, Pfau T et al (2019) Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat Protoc 14:639–702. https://doi.org/10.1038/s41596-018-0098-2

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by the Office of Biological and Environmental Research's Genomic Science program within the US Department of Energy Office of Science, under award numbers DE-AC02-05CH11231, DE-AC02-06CH11357, DE-AC05-00OR22725, and DE-AC02-98CH10886.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Allen, B.H., Gupta, N., Edirisinghe, J.N., Faria, J.P., Henry, C.S. (2022). Application of the Metabolic Modeling Pipeline in KBase to Categorize Reactions, Predict Essential Genes, and Predict Pathways in an Isolate Genome. In: Navid, A. (eds) Microbial Systems Biology. Methods in Molecular Biology, vol 2349. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1585-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1585-0_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1584-3

  • Online ISBN: 978-1-0716-1585-0

  • eBook Packages: Springer Protocols