Skip to main content

Functional Annotation from Structural Homology

  • Protocol
  • First Online:
Microbial Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2349))

  • 1764 Accesses

Abstract

With the nexus of super computing and the biotech revolution, it seems an era of predictive biology through systems biology may be at hand. Modern omics capabilities enable examination of the state of biological system in exquisite detail. The genome, transcriptome, proteome, and metabolome may all be largely knowable, at least for some model systems, providing a basis for modeling and simulation of molecular mechanisms, or pathways, that could capture a biological system’s emergent properties. However, there are significant challenges remaining that impede the realization of this vision, perhaps the most significant being the missing functional annotation of genes and gene products. For even the most well-studied organisms as much as a third of called genes for a given genome are not annotated and more than half may be tenuous. Homology inferred from sequence similarity is the basis for much of genome annotation. Homology inferred from structural similarity could be a powerful complement to sequence-based annotation methods. Structural biology or structural informatics can be used to assign molecular function and may have increasing utility with the rapid growth of gene sequence databases and emerging methods for structure determination, like structure prediction based on coevolution. Here we describe tools and provide example cases using structural similarity at the level of quaternary structure, domain content, domain topology, and small 3D motifs to infer homology and posit function. Ultimately annotation by similarity, be it 3D structure homology or more classically primary sequence homology, must be founded by accurate annotation of one ortholog in the group—understanding every function encoded by a genome remains a major challenge to life science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2007) GenBank. Nucleic Acids Res 36(Suppl_1):D25–D30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Lachmann A, Torre D, Keenan AB, Jagodnik KM, Lee HJ, Wang L, Silverstein MC, Ma’ayan A (2018) Massive mining of publicly available RNA-seq data from human and mouse. Nat Commun 9(1):1–10

    Article  CAS  Google Scholar 

  3. Omenn GS, Lane L, Overall CM, Corrales FJ, Schwenk JM, Paik YK, Van Eyk JE, Liu S, Snyder M, Baker MS, Deutsch EW (2018) Progress on identifying and characterizing the human proteome: 2018 metrics from the HUPO human proteome project. J Proteome Res 17(12):4031–4041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McCool EN, Lubeckyj RA, Shen X, Chen D, Kou Q, Liu X, Sun L (2018) Deep top-down proteomics using capillary zone electrophoresis-tandem mass spectrometry: identification of 5700 proteoforms from the Escherichia coli proteome. Anal Chem 90(9):5529–5533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Feussner K, Feussner I (2019) Comprehensive LC-MS-based metabolite fingerprinting approach for plant and fungal-derived samples. In: High-throughput metabolomics. Humana, New York, NY, pp 167–185

    Chapter  Google Scholar 

  6. Lake BB, Chen S, Sos BC, Fan J, Kaeser GE, Yung YC, Duong TE, Gao D, Chun J, Kharchenko PV, Zhang K (2018) Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat Biotechnol 36(1):70–80

    Article  CAS  PubMed  Google Scholar 

  7. Sandberg R (2014) Entering the era of single-cell transcriptomics in biology and medicine. Nat Methods 11(1):22–24

    Article  CAS  PubMed  Google Scholar 

  8. DOE US (2019) Breaking the bottleneck of genomes: understanding gene function across taxa workshop report, DOE/SC-0199. U.S. Department of Energy Office of Science, Washington, DC. https://genomicscience.energy.gov/genefunction/. Accessed 26 Feb 2020

    Google Scholar 

  9. Sivashankari S, Shanmughavel P (2006) Functional annotation of hypothetical proteins–a review. Bioinformation 1(8):335

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hutchison CA, Chuang RY, Noskov VN, Assad-Garcia N, Deerinck TJ, Ellisman MH, Gill J, Kannan K, Karas BJ, Ma L, Pelletier JF (2016) Design and synthesis of a minimal bacterial genome. Science 351:6280

    Article  CAS  Google Scholar 

  11. Richarme G, Liu C, Mihoub M, Abdallah J, Leger T, Joly N, Liebart JC, Jurkunas UV, Nadal M, Bouloc P, Dairou J (2017) Guanine glycation repair by DJ-1/Park7 and its bacterial homologs. Science 357(6347):208–211

    Article  CAS  PubMed  Google Scholar 

  12. UniProt Consortium (2018) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47(D1):D506–D515

    Article  CAS  Google Scholar 

  13. UniProt consortium (2020) UniProt UniProtKB/Swiss-Prot UniProt release 2020_01. https://www.uniprot.org/statistics/Swiss-Prot. Accessed 26 Feb 2020

  14. Giordanetto F, Knerr L, Nordberg P, Pettersen D, Selmi N, Beisel HG, de la Motte H, Månsson Å, Dahlstrom M, Broddefalk J, Saarinen G (2018) Design of Selective sPLA2-X inhibitor (−)-2-{2-[carbamoyl-6-(trifluoromethoxy)-1 H-indol-1-yl] pyridine-2-yl} propanoic acid. ACS Med Chem Lett 9(7):600–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sekar K, Sekharudu C, Tsai MD, Sundaralingam M (1998) 1.72 Å resolution refinement of the trigonal form of bovine pancreatic phospholipase A2. Acta Crystallogr D Biol Crystallogr 54(3):342–346

    Article  CAS  PubMed  Google Scholar 

  16. Segelke BW, Nguyen D, Chee R, Xuong NH, Dennis EA (1998) Structures of two novel crystal forms of Naja naja naja phospholipase A2 lacking Ca2+ reveal trimeric packing. J Mol Biol 279(1):223–232

    Article  CAS  PubMed  Google Scholar 

  17. Scott DL, Otwinowski Z, Gelb MH, Sigler PB (1990) Crystal structure of bee-venom phospholipase A2 in a complex with a transition-state analogue. Science 250(4987):1563–1566

    Article  CAS  PubMed  Google Scholar 

  18. Cavazzini D, Meschi F, Corsini R, Bolchi A, Rossi GL, Einsle O, Ottonello S (2013) Autoproteolytic activation of a symbiosis-regulated truffle phospholipase A2. J Biol Chem 288(3):1533–1547

    Article  CAS  PubMed  Google Scholar 

  19. Matoba Y, Sugiyama M (2003) Atomic resolution structure of prokaryotic phospholipase A2: analysis of internal motion and implication for a catalytic mechanism. Proteins 51(3):453–469

    Article  CAS  PubMed  Google Scholar 

  20. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  21. Scott DL, Sigler PB (1994) Structure and catalytic mechanism of secretory phospholipases A2. Adv Protein Chem 45:53–88

    Article  CAS  PubMed  Google Scholar 

  22. Noeske J, Wasserman MR, Terry DS, Altman RB, Blanchard SC, Cate JH (2015) High-resolution structure of the Escherichia coli ribosome. Nat Struct Mol Biol 22(4):336–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Locher KP (2016) Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat Struct Mol Biol 23(6):487

    Article  CAS  PubMed  Google Scholar 

  24. Oldham ML, Khare D, Quiocho FA, Davidson AL, Chen J (2007) Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450(7169):515

    Article  CAS  PubMed  Google Scholar 

  25. Hvorup RN, Goetz BA, Niederer M, Hollenstein K, Perozo E, Locher KP (2007) Asymmetry in the structure of the ABC transporter-binding protein complex BtuCD-BtuF. Science 317(5843):1387–1390

    Article  CAS  PubMed  Google Scholar 

  26. Hutchinson EG, Thornton JM (1990) HERA—a program to draw schematic diagrams of protein secondary structures. Proteins 8(3):203–212

    Article  CAS  PubMed  Google Scholar 

  27. Laskowski RA, Jabłońska J, Pravda L, Vařeková RS, Thornton JM (2018) PDBsum: structural summaries of PDB entries. Protein Sci 27(1):129–134

    Article  CAS  PubMed  Google Scholar 

  28. Lewinson O, Livnat-Levanon N (2017) Mechanism of action of ABC importers: conservation, divergence, and physiological adaptations. J Mol Biol 429(5):606–619

    Article  CAS  PubMed  Google Scholar 

  29. RCSB (2000) Protein Data Bank. http://www.rcsb.org/. Accessed 26 Feb 2020

  30. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. wwPDB (2003) Worldwide Protein Data Bank. http://www.wwpdb.org/. Accessed 26 Feb 2020

  32. Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide protein data bank. Nat Struct Mol Biol 10(12):980

    Article  CAS  Google Scholar 

  33. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  34. NIH, National Center for Biotechnology Information, U.S. National Library of Medicine (1990) BLAST >> blastp suite. https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins. Accessed 26 Feb 2020

  35. Ye Y, Godzik A (2003) Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinformatics 19(Suppl 2):ii246–ii255

    Article  PubMed  Google Scholar 

  36. Godzik Lab (2020) FATCAT. http://fatcat.godziklab.org/fatcat-cgi/cgi/fatcat.pl?-func=search. Accessed 26 Feb 2020

  37. EMBL-EBI (2013) PDBsum pictorial database of 3D structures in the protein databank. https://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?pdbcode=index.html. Accessed 26 Feb 2020

  38. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, Sonnhammer ELL (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47(D1):D427–D432

    Article  CAS  PubMed  Google Scholar 

  39. EMBL-EBI (2018) Pfam 32.0. https://pfam.xfam.org/. Accessed 26 Feb 2020

  40. Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L, Finn RD (2008) InterPro: the integrative protein signature database. Nucleic Acids Res 37(Suppl 1):D211–D215

    PubMed  PubMed Central  Google Scholar 

  41. Dawson NL, Lewis TE, Das S, Lees JG, Lee D, Ashford P, Orengo CA, Sillitoe I (2017) CATH: an expanded resource to predict protein function through structure and sequence. Nucleic Acids Res 45(D1):D289–D295

    Article  CAS  PubMed  Google Scholar 

  42. CATH (2020) CATH/Gene3D v4.2. https://www.cathdb.info/. Accessed 26 Feb 2020

  43. Fox NK, Brenner SE, Chandonia JM (2014) SCOPe: structural classification of proteins—extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acids Res 42(D1):D304–D309

    Article  CAS  PubMed  Google Scholar 

  44. Murzin AG, Brenner SE, Hubbard TJP, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540

    CAS  PubMed  Google Scholar 

  45. Milburn D, Laskowski RA, Thornton JM (1998) Sequences annotated by structure: a tool to facilitate the use of structural information in sequence analysis. Protein Eng 11(10):855–859

    Article  CAS  PubMed  Google Scholar 

  46. Lipman DJ, Pearson WR (1985) Rapid and sensitive protein similarity searches. Science 227(4693):1435–1441

    Article  CAS  PubMed  Google Scholar 

  47. Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, Ben-Tal N (2016) ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 44(W1):W344–W350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tian W, Chen C, Lei X, Zhao J, Liang J (2018) CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res 46(W1):W363–W367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. RASMOT-3D PRO (2009) Recursive Automatic Search of MOTif in 3D structures of PROteins. http://biodev.cea.fr/rasmot3d/. Accessed 26 Feb 2020

  50. Debret G, Martel A, Cuniasse P (2009) RASMOT-3D PRO: a 3D motif search webserver. Nucleic Acids Res 37(Suppl 2):W459–W464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zeng ZH, Castano AR, Segelke BW, Stura EA, Peterson PA, Wilson IA (1997) Crystal structure of mouse CD1: an MHC-like fold with a large hydrophobic binding groove. Science 277(5324):339–345

    Article  CAS  PubMed  Google Scholar 

  52. Fremont DH, Matsumura M, Stura EA, Peterson PA, Wilson IA (1992) Crystal structures of two viral peptides in complex with murine MHC class I H-2Kb. Science 257(5072):919–927

    Article  CAS  PubMed  Google Scholar 

  53. El-Etr SH, Margolis JJ, Monack D, Robison RA, Cohen M, Moore E, Rasley A (2009) Francisella tularensis type a strains cause the rapid encystment of Acanthamoeba castellanii and survive in amoebal cysts for three weeks postinfection. Appl Environ Microbiol 75(23):7488–7500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Feld GK, El-Etr S, Corzett MH, Hunter MS, Belhocine K, Monack DM, Frank M, Segelke BW, Rasley A (2014) Structure and function of REP34 implicates carboxypeptidase activity in Francisella tularensis host cell invasion. J Biol Chem 289(44):30668–30679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. PDB id: 3b2y, Joint Center for Structural Genomics (JCSG) (2007) Crystal structure of metallopeptidase containing co-catalytic metalloactive site (YP_563529.1) from Shewanella denitrificans OS217 at 1.74 Å resolution. https://doi.org/10.2210/pdb3B2Y/pdb

  56. Otero A, Rodríguez de la Vega M, Tanco S, Lorenzo J, Avilés FX, Reverter D (2012) The novel structure of a cytosolic M14 metallocarboxypeptidase (CCP) from Pseudomonas aeruginosa: a model for mammalian CCPs. FASEB J 26(9):3754–3764

    Article  CAS  PubMed  Google Scholar 

  57. PDB id: 2omo, Osipiuk J, Evdokimova E, Kagan O, Savchenko A, Edwards A, Joachimiak A, Midwest Center for Structural Genomics (MCSG) (2007) Putative antibiotic biosynthesis monooxygenase from Nitrosomonas europaea. DOI. https://doi.org/10.2210/pdb2OMO/pdb

  58. PDB id: 2gff, de Carvalho-Kavanagh M, Schafer J, Lekin T, Toppani D, Chain P, Lao V, Motin V, Garcia E, Segelke B (2007) Crystal structure of Yersinia pestis LsrG. https://doi.org/10.2210/pdb2GFF/pdb

  59. Marques JC, Lamosa P, Russell C, Ventura R, Maycock C, Semmelhack MF, Miller ST, Xavier KB (2011) Processing the interspecies quorum-sensing signal autoinducer-2 (AI-2) characterization of phospho-(S)-4, 5-dihydroxy-2, 3-pentanedione isomerization by LsrG protein. J Biol Chem 286(20):18331–18343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lemieux MJ, Ference C, Cherney MM, Wang M, Garen C, James MN (2005) The crystal structure of Rv0793, a hypothetical monooxygenase from M. tuberculosis. J Struct Funct Genom 6(4):245–257

    Article  CAS  Google Scholar 

  61. PDB id: 3f44, Joint Center for Structural Genomics (JCSG) (2008) Crystal structure of putative monooxygenase (YP_193413.1) from Lactobacillus acidophilus NCFM at 1.55 A resolution. https://doi.org/10.2210/pdb3F44/pdb

  62. PDB id: 3kkf, Joint Center for Structural Genomics (JCSG) (2009) Crystal structure of putative antibiotic biosynthesis monooxygenase (NP_810307.1) from Bacteroides thetaiotaomicron VPI-5482 at 1.30 Å resolution. https://doi.org/10.2210/pdb3KKF/pdb

  63. PDB id: 3mcs, Joint Center for Structural Genomics (JCSG) (2010) Crystal structure of putative monooxygenase (fn1347) from fusobacterium nucleatum subsp. Nucleatum ATCC 25586 at 2.55 Å resolution. https://doi.org/10.2210/pdb3MCS/pdb

  64. PDB id: 3bm7, Joint Center for Structural Genomics (JCSG) (2007) Crystal structure of a putative antibiotic biosynthesis monooxygenase (cc_2132) from Caulobacter crescentus cb15 at 1.35 Å resolution. https://doi.org/10.2210/pdb3BM7/pdb

  65. PDB id: 1r6y, Adams MA, Jia Z, Montreal-Kingston Bacterial Structural Genomics Initiative (BSGI) (2003) Crystal structure of YgiN from Escherichia coli. https://doi.org/10.2210/pdb1R6Y/pdb

  66. PDB id: 1q8b, Zhang R, Joachimiak A, Edwards A, Savchenko A, Midwest Center for Structural Genomics (MCSG) (2003) Structural genomics, protein YJCS. https://doi.org/10.2210/pdb1Q8B/pdb

  67. PDB id: 1x7v, Sanders DA, Walker JR, Skarina T, Gorodichtchenskaia E, Joachimiak A, Edwards A, Savchenko A, Midwest Center for Structural Genomics (MCSG) (2004) Crystal structure of PA3566 from Pseudomonas aeruginosa. https://doi.org/10.2210/pdb1X7V/pdb

  68. PDB id: 2fb0, Nocek B, Hatzos C, Abdullah J, Collart F, and Joachimiak A, Midwest Center for Structural Genomics (MCSG) (2006) Crystal structure of conserved protein of unknown function from Bacteroides thetaiotaomicron VPI-5482 at 2.10 Å resolution, possible oxidoreductase. https://doi.org/10.2210/pdb2FB0/pdb

  69. PDB id: 2bbe, Chang C, Bigelow L, Joachimiak A, Midwest Center for Structural Genomics (MCSG) (2005) Crystal structure of protein SO0527 from Shewanella oneidensis. https://doi.org/10.2210/pdb2BBE/pdb

  70. PDB id: 4dpo, Agarwal R, Chamala S, Evans R, Gizzi A, Hillerich B, Kar A, LaFleur J, Foti R, Siedel R, Zencheck W, Villigas G, Almo SC, Swaminathan S, New York Structural Genomics Research Consortium (NYSGRC) (2012) Crystal structure of a conserved protein MM_1583 from Methanosarcina mazei Go1. https://doi.org/10.2210/pdb4DPO/pdb

  71. Sciara G, Kendrew SG, Miele AE, Marsh NG, Federici L, Malatesta F, Schimperna G, Savino C, Vallone B (2003) The structure of ActVA-Orf6, a novel type of monooxygenase involved in actinorhodin biosynthesis. EMBO J 22(2):205–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wada, Shirouzu T, Terada M, Kamewari T, Park Y, Tame SY, Kuramitsu JR, Yokoyama S (2004) Crystal structure of the conserved hypothetical protein TT1380 from Thermus thermophilus HB8. Proteins 55(3):778–780

    Article  CAS  PubMed  Google Scholar 

  73. Grocholski T, Koskiniemi H, Lindqvist Y, Mäntsälä P, Niemi J, Schneider G (2010) Crystal structure of the cofactor-independent monooxygenase SnoaB from Streptomyces nogalater: implications for the reaction mechanism. Biochemistry 49(5):934–944

    Article  CAS  PubMed  Google Scholar 

  74. Chim N, Iniguez A, Nguyen TQ, Goulding CW (2010) Unusual diheme conformation of the heme-degrading protein from Mycobacterium tuberculosis. J Mol Biol 395(3):595–608

    Article  CAS  PubMed  Google Scholar 

  75. PDB id: 4fca, Tan K, Zhou M, Kwon K, Anderson WF, Joachimiak A, Center for Structural Genomics of Infectious Diseases (CSGID) (2012) The crystal structure of a functionally unknown conserved protein from Bacillus anthracis str. Ames. https://doi.org/10.2210/pdb4FCA/pdb

  76. PDB id: 4fgm, Vorobiev S, Su M, Tong T, Kohan E, Wang D, Everett JK, Acton TB, Montelione GT, Tong L, Hunt JF, Northeast Structural Genomics Consortium (NESGC) (2012) Crystal structure of the aminopeptidase n family protein q5qty1 from Idiomarina loihiensis, Northeast structural genomics consortium target ilr60. https://doi.org/10.2210/pdb4FGM/pdb

  77. Segelke B, Knapp M, Kadkhodayan S, Balhorn R, Rupp B (2004) Crystal structure of Clostridium botulinum neurotoxin protease in a product-bound state: evidence for noncanonical zinc protease activity. Proc Natl Acad Sci 101(18):6888–6893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. PDB id: 3u9w, Niegowski D, Thunnissen M, Tholander F, Rinaldo-Matthis A, Muroya A, Haeggstrom J Z (2012) Structure of human leukotriene a4 hydrolase in complex with inhibitor sc57461a. https://doi.org/10.2210/pdb3U9W/pdb

  79. Rawlings ND, Barrett AJ (1995) Evolutionary families of metallopeptidases. Methods Enzymol 248:183–228

    Article  CAS  PubMed  Google Scholar 

  80. Guzenko D, Burley SK, Duarte JM 2020 Real time structural search of the Protein Data Bank. PLoS computational biology, 16(7), p.e1007970

    Google Scholar 

Download references

Acknowledgments

Molecular graphics and analyses were performed with UCSF Chimera, developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco, with support from NIH P41-GM103311.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent W. Segelke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Segelke, B.W. (2022). Functional Annotation from Structural Homology. In: Navid, A. (eds) Microbial Systems Biology. Methods in Molecular Biology, vol 2349. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1585-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1585-0_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1584-3

  • Online ISBN: 978-1-0716-1585-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics