Skip to main content

Detection of lncRNA by LNA-Based In Situ Hybridization in Paraffin-Embedded Cancer Cell Spheroids

Part of the Methods in Molecular Biology book series (MIMB,volume 2348)

Abstract

Cancer cell spheroids are considered important preclinical tools to evaluate the efficacy of new drugs. In cancer cell spheroids, the cells assemble and grow in 3D structures with cell contact interactions that are partly impermeable, which leads to central hypoxia and necrosis. The cell spheroids thus possess several features identified in clinical tumors. Not only will the effect and behavior of therapeutic drugs in 3D cell spheroids be affected more similarly than in cells grown on culture plates, but molecular interactions and signaling pathways in cells are also more likely to mimic the in vivo situation. The monitoring of various biomarkers including lncRNAs in 3D cell spheroids is important to assess a potentially induced phenotype in the cells and the effects of drugs. Specifically, for lncRNAs, in situ localization can be done using locked nucleic acid (LNA) probe technology. Here we present a protocol for preparation of cell spheroids for use in LNA probe–based in situ hybridization to study lncRNA expression in paraffin embedded 3D cancer cell spheroids.

Key words

  • lncRNA
  • Spheroid
  • LNA
  • In situ hybridization
  • MALAT1
  • UCA1

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Simiantonaki N, Kurzik-Dumke U, Karyofylli G, Jayasinghe C, Kirkpatrick CJ (2007) Loss of E-cadherin in the vicinity of necrosis in colorectal carcinomas: association with NFkappaB expression. Int J Oncol 31(2):269–275

    CAS  PubMed  Google Scholar 

  2. Koledova Z (2017) 3D Coculture of mammary organoids with fibrospheres: a model for studying epithelial-stromal interactions during mammary branching morphogenesis. Methods Mol Biol 1612:107–124. https://doi.org/10.1007/978-1-4939-7021-6_8

    CrossRef  CAS  PubMed  Google Scholar 

  3. Osswald A, Hedrich V, Sommergruber W (2019) 3D-3 tumor models in drug discovery for analysis of immune cell infiltration. Methods Mol Biol 1953:151–162. https://doi.org/10.1007/978-1-4939-9145-7_10

    CrossRef  CAS  PubMed  Google Scholar 

  4. Kuen J, Darowski D, Kluge T, Majety M (2017) Pancreatic cancer cell/fibroblast co-culture induces M2 like macrophages that influence therapeutic response in a 3D model. PLoS One 12(7):e0182039. https://doi.org/10.1371/journal.pone.0182039

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermuller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Dumais E, Patel S, Helt G, Ganesh M, Ghosh S, Piccolboni A, Sementchenko V, Tammana H, Gingeras TR (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316(5830):1484–1488. https://doi.org/10.1126/science.1138341

    CrossRef  CAS  PubMed  Google Scholar 

  6. Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S, Poliakov A, Cao X, Dhanasekaran SM, Wu YM, Robinson DR, Beer DG, Feng FY, Iyer HK, Chinnaiyan AM (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47(3):199–208. https://doi.org/10.1038/ng.3192

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  7. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A, Regev A, Lander ES, Rinn JL (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 106(28):11667–11672. https://doi.org/10.1073/pnas.0904715106

    CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Cabili MN, Dunagin MC, McClanahan PD, Biaesch A, Padovan-Merhar O, Regev A, Rinn JL, Raj A (2015) Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol 16:20. https://doi.org/10.1186/s13059-015-0586-4

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  9. Poulet C, Njock MS, Moermans C, Louis E, Louis R, Malaise M, Guiot J (2020) Exosomal long non-coding RNAs in lung diseases. Int J Mol Sci 21(10):ix76. https://doi.org/10.3390/ijms21103580

    CrossRef  CAS  Google Scholar 

  10. Meseure D, Vacher S, Lallemand F, Alsibai KD, Hatem R, Chemlali W, Nicolas A, De Koning L, Pasmant E, Callens C, Lidereau R, Morillon A, Bieche I (2016) Prognostic value of a newly identified MALAT1 alternatively spliced transcript in breast cancer. Br J Cancer 114(12):1395–1404. https://doi.org/10.1038/bjc.2016.123

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang C, Zhang Q, Hu Y, Zhu J, Yang J (2019) Emerging role of long non-coding RNA MALAT1 in predicting clinical outcomes of patients with digestive system malignancies: a meta-analysis. Oncol Lett 17(2):2159–2170. https://doi.org/10.3892/ol.2018.9875

    CrossRef  CAS  PubMed  Google Scholar 

  12. Arun G, Diermeier S, Akerman M, Chang KC, Wilkinson JE, Hearn S, Kim Y, MacLeod AR, Krainer AR, Norton L, Brogi E, Egeblad M, Spector DL (2016) Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes Dev 30(1):34–51. https://doi.org/10.1101/gad.270959.115

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen Q, Zhu C, Jin Y (2020) The oncogenic and tumor suppressive functions of the long noncoding RNA MALAT1: an emerging controversy. Front Genet 11:93. https://doi.org/10.3389/fgene.2020.00093

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  14. Arun G, Aggarwal D, Spector DL (2020) MALAT1 long non-coding RNA: functional implications. Noncoding RNA 6(2):22. https://doi.org/10.3390/ncrna6020022

    CrossRef  CAS  PubMed Central  Google Scholar 

  15. Wang XS, Zhang Z, Wang HC, Cai JL, Xu QW, Li MQ, Chen YC, Qian XP, Lu TJ, Yu LZ, Zhang Y, Xin DQ, Na YQ, Chen WF (2006) Rapid identification of UCA1 as a very sensitive and specific unique marker for human bladder carcinoma. Clin Cancer Res 12(16):4851–4858. https://doi.org/10.1158/1078-0432.CCR-06-0134

    CrossRef  CAS  PubMed  Google Scholar 

  16. Han Y, Yang YN, Yuan HH, Zhang TT, Sui H, Wei XL, Liu L, Huang P, Zhang WJ, Bai YX (2014) UCA1, a long non-coding RNA up-regulated in colorectal cancer influences cell proliferation, apoptosis and cell cycle distribution. Pathology 46(5):396–401. https://doi.org/10.1097/PAT.0000000000000125

    CrossRef  CAS  PubMed  Google Scholar 

  17. Jiang Y, Du F, Chen F, Qin N, Jiang Z, Zhou J, Jiang T, Pu Z, Cheng Y, Chen J, Dai J, Ma H, Jin G, Hu Z, Yu H, Shen H (2017) Potentially functional variants in lncRNAs are associated with breast cancer risk in a Chinese population. Mol Carcinog 56(9):2048–2057. https://doi.org/10.1002/mc.22659

    CrossRef  CAS  PubMed  Google Scholar 

  18. Kalmar A, Nagy ZB, Galamb O, Csabai I, Bodor A, Wichmann B, Valcz G, Bartak BK, Tulassay Z, Igaz P, Molnar B (2019) Genome-wide expression profiling in colorectal cancer focusing on lncRNAs in the adenoma-carcinoma transition. BMC Cancer 19(1):1059. https://doi.org/10.1186/s12885-019-6180-5

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xuan W, Yu H, Zhang X, Song D (2019) Crosstalk between the lncRNA UCA1 and microRNAs in cancer. FEBS Lett 593(15):1901–1914. https://doi.org/10.1002/1873-3468.13470

    CrossRef  CAS  PubMed  Google Scholar 

  20. Soares RJ, Maglieri G, Gutschner T, Diederichs S, Lund AH, Nielsen BS, Holmstrom K (2018) Evaluation of fluorescence in situ hybridization techniques to study long non-coding RNA expression in cultured cells. Nucleic Acids Res 46(1):e4. https://doi.org/10.1093/nar/gkx946

    CrossRef  CAS  PubMed  Google Scholar 

  21. James JP, Johnsen L, Moller T, Nielsen BS (2020) MicroRNA in situ hybridization in paraffin-embedded cultured cells. Methods Mol Biol 2148:99–110. https://doi.org/10.1007/978-1-0716-0623-0_6

    CrossRef  CAS  PubMed  Google Scholar 

  22. Moller T, James JP, Holmstrom K, Sorensen FB, Lindebjerg J, Nielsen BS (2019) Co-detection of miR-21 and TNF-alpha mRNA in budding cancer cells in colorectal cancer. Int J Mol Sci 20(8):1907. https://doi.org/10.3390/ijms20081907

    CrossRef  CAS  PubMed Central  Google Scholar 

  23. Nielsen BS, Holmstrom K (2019) Combined MicroRNA in situ hybridization and Immunohistochemical detection of protein markers. Methods Mol Biol 1953:271–286. https://doi.org/10.1007/978-1-4939-9145-7_17

    CrossRef  CAS  PubMed  Google Scholar 

  24. Nielsen BS, Moller T, Holmstrom K (2014) Chromogen detection of microRNA in frozen clinical tissue samples using LNA probe technology. Methods Mol Biol 1211:77–84. https://doi.org/10.1007/978-1-4939-1459-3_7

    CrossRef  CAS  PubMed  Google Scholar 

  25. Knudsen KN, Lindebjerg J, Kalmar A, Molnar B, Sorensen FB, Hansen TF, Nielsen BS (2018) miR-21 expression analysis in budding colon cancer cells by confocal slide scanning microscopy. Clin Exp Metastasis 35(8):819–830. https://doi.org/10.1007/s10585-018-9945-3

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by The Danish Agency for Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boye Schnack Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nielsen, B.S. et al. (2021). Detection of lncRNA by LNA-Based In Situ Hybridization in Paraffin-Embedded Cancer Cell Spheroids. In: Navarro, A. (eds) Long Non-Coding RNAs in Cancer. Methods in Molecular Biology, vol 2348. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1581-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1581-2_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1580-5

  • Online ISBN: 978-1-0716-1581-2

  • eBook Packages: Springer Protocols