Skip to main content

Multicomponent Synthesis: Cohesive Integration of Green Chemistry Principles

  • Protocol
  • First Online:
Green Chemistry in Drug Discovery

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1263 Accesses

Abstract

The application of multicomponent reactions (MCRs) in the generation of compound libraries has long been recognized as a key strategy for the development of lead matter in drug discovery. Given the numerous advantages that these processes possess not only from the ability to generate large numbers of diverse compounds but also from a sustainability perspective, it is somewhat surprising that MCRs have not enjoyed such a widespread application in downstream development and the later scale-up of pharmaceutical candidates. The current chapter provides an overview of the most common MCRs with a critical focus on their perceived benefits as a sustainable technology. In addition, an overview of the combination of MCRs with other “green” technologies such as both biocatalysis and flow chemistry is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Huang Y, Yazbak A, Dömling A (2012) Multicomponent reactions in green techniques for organic synthesis and medicinal chemistry. John Wiley & Sons, Ltd., Chichester, pp 497–522

    Book  Google Scholar 

  2. Strecker A (1850) Ueber die künstliche Bildung der Milchsäure und einen neuen, dem Glycocoll homologen Körper. Justus Liebigs Annalen der Chemie 75(1):27–45

    Article  Google Scholar 

  3. Hantzsch A (1881) Condensationsprodukte aus Aldehydammoniak und ketonartigen Verbindungen. Ber Dtsch Chem Ges 14(2):1637–1638

    Article  Google Scholar 

  4. Biginelli P (1891) Ueber Aldehyduramide des Acetessigäthers II. Ber. Dtsch. Chem. Ges 24

    Google Scholar 

  5. Wöhler F (1828) Ueber künstliche Bildung des Harnstoffs. Ann Phys 88(2):253–256

    Article  Google Scholar 

  6. Dömling A, Wang W, Wang K (2012) Chemistry and biology of multicomponent reactions. Chem Rev 112(6):3083–3135

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nguyen LT, De Borggraeve WM, Grellier P, Pham VC, Dehaen W, Nguyen VH (2014) Synthesis of 11-aza-artemisinin derivatives using the Ugi reaction and an evaluation of their antimalarial activity. Tetrahedron Lett 55(35):4892–4894

    Article  Google Scholar 

  8. Reta GF, Chiaramello AI, García C, León LG, Martín VS, Padrón JM, Tonn CE, Donadel OJ (2013) Derivatives of grindelic acid: from a non-active natural diterpene to synthetic antitumor derivatives. Eur J Med Chem 67:28–38

    Article  CAS  PubMed  Google Scholar 

  9. Okamoto K, Sakagami M, Feng F, Takahashi F, Uotani K, Togame H, Takemoto H, Ichikawa S, Matsuda A (2012) Synthesis of pacidamycin analogues via an Ugi-multicomponent reaction. Bioorg Med Chem Lett 22(14):4810–4815

    Article  CAS  PubMed  Google Scholar 

  10. Peixoto PA, Boulange A, Leleu S, Franck X (2013) Versatile synthesis of acylfuranones by reaction of acylketenes with α-hydroxy ketones: application to the one-step multicomponent synthesis of cadiolide B and its analogues. Eur J Org Chem 16:3316–3327

    Article  Google Scholar 

  11. Katayama K, Nakagawa K, Takeda H, Matsuda A, Ichikawa S (2013) Total synthesis of sandramycin and its analogues via a multicomponent assemblage. Org Lett 16(2):428–431

    Article  PubMed  Google Scholar 

  12. Bourgault JP, Maddirala AR, Andreana PR (2014) A one-pot multicomponent coupling/cyclization for natural product herbicide (±)-thaxtomin A. Org Biomol Chem 12(41):8125–8127

    Article  CAS  PubMed  Google Scholar 

  13. Chiba T, Hosono H, Nakagawa K, Asaka M, Takeda H, Matsuda A, Ichikawa S (2014) Total synthesis of syringolin-A and improvement of its biological activity. Angew Chem 126(19):4936–4939

    Article  Google Scholar 

  14. Saito K, Nishimori A, Mimura R, Nakano K, Kotsuki H, Masuda T, Ichikawa Y (2013) A Biomimetic approach to the synthesis of the core structure of the marine sponge terpene halichonadin G. Eur J Org Chem 2013(31):7041–7043

    Article  CAS  Google Scholar 

  15. Akritopoulou-Zanze I (2008) Isocyanide-based multicomponent reactions in drug discovery. Curr Opin Chem Biol 12(3):324–331

    Article  CAS  PubMed  Google Scholar 

  16. Kalinski C, Umkehrer M, Weber L, Kolb J, Burdack C, Ross G (2010) On the industrial applications of MCRs: molecular diversity in drug discovery and generic drug synthesis. Mol Divers 14(3):513–522

    Article  CAS  PubMed  Google Scholar 

  17. Magedov IV, Kornienko A (2012) Multicomponent reactions in alkaloid-based drug discovery. Chem Heterocycl Compd 48(1):33–38

    Article  CAS  Google Scholar 

  18. Slobbe P, Ruijter E, Orru RVA (2012) Recent applications of multicomponent reactions in medicinal chemistry. MedChemComm 3(10):1189–1218

    Article  CAS  Google Scholar 

  19. Ruijter E, Orru RVA (2013) Multicomponent reactions – opportunities for the pharmaceutical industry. Drug Discov Today Technol 10(1):e15–e20

    Article  PubMed  Google Scholar 

  20. Cioc RC, Ruijter E, Orru RVA (2014) Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chem 16(6):2958–2975

    Article  CAS  Google Scholar 

  21. Elders N, Ruijter E, de Kanter FJJ, Groen MB, Orru RVA (2008) Selective formation of 2-imidazolines and 2-substituted oxazoles by using a three-component reaction. Chemistry 14(16):4961–4973

    Article  CAS  PubMed  Google Scholar 

  22. Ivachtchenko AV, Ivanenkov YA, Kysil VM, Krasavin MY, Ilyin AP (2010) Multicomponent reactions of isocyanides in the synthesis of heterocycles. Russ Chem Rev 79(9):787–817

    Article  CAS  Google Scholar 

  23. Zhu J, Wang Q, Wang M-X (2010) Development and application of isocyanide-based multicomponent reactions in handbook of green chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  24. van Berkel SS, Bogels BGM, Wijdeven MA, Westermann B, Rutjes F (2012) Recent advances in asymmetric isocyanide-based multicomponent reactions. Eur J Org Chem 19:3543–3559

    Article  Google Scholar 

  25. Azuaje J, El Maatougui A, García-Mera X, Sotelo E (2014) Ugi-based approaches to quinoxaline libraries. ACS Comb Sci 16(8):403–411

    Article  CAS  PubMed  Google Scholar 

  26. Barlow TMA, Jida M, Tourwe D, Ballet S (2014) Efficient synthesis of conformationally constrained, amino-triazoloazepinone-containing di- and tripeptides via a one-pot Ugi–Huisgen tandem reaction. Org Biomol Chem 12(36):6986–6989

    Article  CAS  PubMed  Google Scholar 

  27. Che C, Yang B, Jiang X, Shao T, Yu Z, Tao C, Li S, Lin S (2014) Syntheses of fused tetracyclic quinolines via Ugi-variant MCR and Pd-catalyzed bis-annulation. J Org Chem 79(1):436–440

    Article  CAS  PubMed  Google Scholar 

  28. Zeng X-H, Wang H-M, Yan Y-M, Wu L, Ding M-W (2014) One-pot regioselective synthesis of β-lactams by a tandem Ugi 4CC/SN cyclization. Tetrahedron 70(23):3647–3652

    Article  CAS  Google Scholar 

  29. Polindara-Garcia LA, Vazquez A (2014) Combinatorial synthesis of nicotine analogs using an Ugi 4-CR/cyclization-reduction strategy. Org Biomol Chem 12(36):7068–7082

    Article  CAS  PubMed  Google Scholar 

  30. Sharma N, Li Z, Sharma UK, Van der Eycken EV (2014) Facile access to functionalized spiro[indoline-3,2′-pyrrole]-2,5′-diones via post-Ugi Domino Buchwald–Hartwig/Michael reaction. Org Lett 16(15):3884–3887

    Article  CAS  PubMed  Google Scholar 

  31. Ghabraie E, Balalaie S, Mehrparvar S, Rominger F (2014) Synthesis of functionalized β-lactams and pyrrolidine-2,5-diones through a metal-free sequential Ugi-4CR/cyclization reaction. J Org Chem 79(17):7926–7934

    Article  CAS  PubMed  Google Scholar 

  32. Treder AP, Tremblay M-C, Yudin AK, Marsault E (2014) Solid-phase synthesis of piperazinones via disrupted Ugi condensation. Org Lett 16(17):4674–4677

    Article  CAS  PubMed  Google Scholar 

  33. Ugi I, Meyr R, Isonitrile I (1960) Darstellung von Isonitrilen aus monosubstituierten Formamiden durch Wasserabspaltung. Chemische Berichte-Recueil 93(1):239–248

    Article  CAS  Google Scholar 

  34. Hofmann AW (1867) Ueber eine neue Reihe von Homologen der Cyanwasserstoffsäure. Justus Liebigs Annalen der Chemie 144(1):114–120

    Article  Google Scholar 

  35. El Kaim L, Grimaud L, Schiltz A (2009) “Isocyanide-free” Ugi reactions. Org Biomol Chem 7(15):3024–3026

    Article  Google Scholar 

  36. El Kaim L, Grimaud L, Schiltz A (2009) Isocyanide-based multicomponent reaction ‘without’ isocyanides. Synlett 9:1401–1404

    Google Scholar 

  37. Pronin SV, Reiher CA, Shenvi RA (2013) Stereoinversion of tertiary alcohols to tertiary-alkyl isonitriles and amines. Nature 501(7466):195–199

    Article  CAS  PubMed  Google Scholar 

  38. Koopmanschap G, Ruijter E, Orru RVA (2014) Isocyanide-based multicomponent reactions towards cyclic constrained peptidomimetics. Beilstein J Org Chem 10:544–598

    Article  PubMed  PubMed Central  Google Scholar 

  39. Khoury K, Sinha MK, Nagashima T, Herdtweck E, Domling A (2012) Efficient assembly of iminodicarboxamides by a “truly” four-component reaction. Angew Chem Int Ed 51(41):10280–10283

    Article  CAS  Google Scholar 

  40. Yip Y, Victor F, Lamar J, Johnson R, Wang QM, Barket D, Glass J, Jin L, Liu L, Venable D, Wakulchik M, Xie C, Heinz B, Villarreal E, Colacino J, Yumibe N, Tebbe M, Munroe J, Chen S-H (2004) Discovery of a novel bicycloproline P2 bearing peptidyl α-ketoamide LY514962 as HCV protease inhibitor. Bioorg Med Chem Lett 14(1):251–256

    Article  CAS  PubMed  Google Scholar 

  41. Znabet A, Polak MM, Janssen E, de Kanter FJJ, Turner NJ, Orru RVA, Ruijter E (2010) A highly efficient synthesis of telaprevir by strategic use of biocatalysis and multicomponent reactions. Chem Commun 46(42):7918–7920

    Article  CAS  Google Scholar 

  42. Constable DJC, Curzons AD, Cunningham VL (2002) Metrics to ‘green’ chemistry—which are the best? Green Chem 4(6):521–527

    Article  CAS  Google Scholar 

  43. Curzons AD, Constable DJC, Mortimer DN, Cunningham VL (2001) So you think your process is green, how do you know?—Using principles of sustainability to determine what is green–a corporate perspective. Green Chem 3(1):1–6

    Article  CAS  Google Scholar 

  44. Znabet A, Ruijter E, de Kanter FJJ, Köhler V, Helliwell M, Turner NJ, Orru RVA (2010) Highly stereoselective synthesis of substituted prolyl peptides using a combination of biocatalytic desymmetrization and multicomponent reactions. Angew Chem Int Ed 49(31):5289–5292

    Article  CAS  Google Scholar 

  45. Xia L, Li S, Chen R, Liu K, Chen X (2013) Catalytic Ugi-type condensation of α-isocyanoacetamide and chiral cyclic imine: access to asymmetric construction of several heterocycles. J Org Chem 78(7):3120–3131

    Article  CAS  PubMed  Google Scholar 

  46. Thompson MJ, Chen B (2009) Ugi reactions with ammonia offer rapid access to a wide range of 5-aminothiazole and oxazole derivatives. J Org Chem 74(18):7084–7093

    Article  CAS  PubMed  Google Scholar 

  47. Nanda KK, Wesley Trotter B (2005) Diastereoselective petasis Mannich reactions accelerated by hexafluoroisopropanol: a pyrrolidine-derived arylglycine synthesis. Tetrahedron Lett 46(12):2025–2028

    Article  CAS  Google Scholar 

  48. Ghosal P, Shaw AK (2012) A Chiron approach to aminocytitols by petasis-borono-mannich reaction: formal synthesis of (+)-conduramine E and (−)-conduramine E. J Org Chem 77(17):7627–7632

    Article  CAS  PubMed  Google Scholar 

  49. Petasis NA, Akritopoulou I (1993) The boronic acid mannich reaction: a new method for the synthesis of geometrically pure allylamines. Tetrahedron Lett 34(4):583–586

    Article  CAS  Google Scholar 

  50. Wang Y, Saha B, Li F, Frett B, Li HY (2014) An expeditious approach to access 2-arylimidazo[1,2-a]pyridin-3-ol from 2-amino pyridine through a novel Petasis based cascade reaction. Tetrahedron Lett 55(7):1281–1284

    Article  CAS  Google Scholar 

  51. Gu Y (2012) Multicomponent reactions in unconventional solvents: state of the art. Green Chem 14(8):2091–2128

    Article  CAS  Google Scholar 

  52. Simon M-O, Li C-J (2012) Green chemistry oriented organic synthesis in water. Chem Soc Rev 41(4):1415–1427

    Article  CAS  PubMed  Google Scholar 

  53. Isambert N, Duque MM, Plaquevent J-C, Genisson Y, Rodriguez J, Constantieux T (2011) Multicomponent reactions and ionic liquids: a perfect synergy for eco-compatible heterocyclic synthesis. Chem Soc Rev 40(3):1347–1357

    Article  CAS  PubMed  Google Scholar 

  54. Singh MS, Chowdhury S (2012) Recent developments in solvent-free multicomponent reactions: a perfect synergy for eco-compatible organic synthesis. RSC Adv 2(11):4547–4592

    Article  CAS  Google Scholar 

  55. Pori M, Galletti P, Soldati R, Giacomini D (2013) Asymmetric strecker reaction with chiral amines: a catalyst-free protocol using acetone cyanohydrin in water. Eur J Org Chem 2013(9):1683–1695

    Article  CAS  Google Scholar 

  56. Mojtahedi MM, Abaee MS, Abbasi H (2006) Environmentally friendly room temperature Strecker reaction: one-pot synthesis of α-aminonitriles in ionic liquid. J Iran Chem Soc 3(1):93–97

    Article  CAS  Google Scholar 

  57. Hu XC, Ma YH, Li Z (2012) Eco-friendly synthesis of α-aminonitriles from ketones in PEG-400 medium using potassium Hexacyanoferrate(II) as cyanide source. J Organomet Chem 705:70–74

    Article  CAS  Google Scholar 

  58. Chaturvedi D, Chaturvedi AK, Dwivedi PK, Mishra N (2013) A novel approach to the synthesis of α-aminonitriles using triphenyl-phosphine dibromide under solvent-free conditions. Synlett 24(1):33–36

    Article  CAS  Google Scholar 

  59. Avalani JR, Patel DS, Raval DK (2012) 1-Methylimidazolium trifluoroacetate [Hmim]Tfa: mild and efficient Brønsted acidic ionic liquid for Hantzsch reaction under microwave irradiation. J Chem Sci 124(5):1091–1096

    Article  CAS  Google Scholar 

  60. Fan XS, Li YZ, Zhang XY, Qu GR, Wang JJ, Hu XY (2006) An efficient and green synthesis of 1,4-dihydropyridine derivatives through multi-component reaction in ionic liquid. Heteroat Chem 17(5):382–388

    Article  CAS  Google Scholar 

  61. Wang XC, Gong HP, Quan ZJ, Li L, Ye HL (2011) One-pot, three-component synthesis of 1,4-dihydropyridines in PEG-400. Synth Commun 41(21):3251–3258

    Article  CAS  Google Scholar 

  62. Heravi MM, Zakeri M, Pooremamy S, Oskooie HA (2010) Clean and efficient synthesis of polyhydroquinoline derivatives under solvent-free conditions catalyzed by morpholine. Synth Commun 41(1):113–120

    Article  Google Scholar 

  63. Rao GBD, Anjaneyulu B, Kaushik MP (2014) A facile one-pot five-component synthesis of glycoside annulated dihydropyrimidinone derivatives with 1,2,3-triazol linkage via transesterification/Biginelli/click reactions in aqueous medium. Tetrahedron Lett 55(1):19–22

    Article  Google Scholar 

  64. Chavan SS, Sharma YO, Degani MS (2009) Cost-effective ionic liquid for environmentally friendly synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Green Chem Lett Rev 2(3):175–179

    Article  CAS  Google Scholar 

  65. Jain SL, Singhal S, Sain B (2007) PEG-assisted solvent and catalyst free synthesis of 3,4-dihydropyrimidinones under mild reaction conditions. Green Chem 9(7):740–741

    Article  CAS  Google Scholar 

  66. Xu Z, Jiang YY, Zou S, Liu Y (2014) Bio-based solvent mediated synthesis of dihydropyrimidinthiones via biginelli reaction. Phosphorus Sulfur Silicon Relat Elem 189(6):791–795

    Article  CAS  Google Scholar 

  67. Dondoni A, Massi A (2001) Parallel synthesis of dihydropyrimidinones using Yb(III)-resin and polymer-supported scavengers under solvent-free conditions. A green chemistry approach to the Biginelli reaction. Tetrahedron Lett 42(45):7975–7978

    Article  CAS  Google Scholar 

  68. Luo S, Mi X, Liu S, Xu H, Cheng J-P (2006) Surfactant-type asymmetric organocatalyst: organocatalytic asymmetric Michael addition to nitrostyrenes in water. Chem Commun 35:3687–3689

    Article  Google Scholar 

  69. Alvim HGO, Bataglion GA, Ramos LM, de Oliveira AL, de Oliveira HCB, Eberlin MN, de Macedo JL, da Silva WA, Neto BAD (2014) Task-specific ionic liquid incorporating anionic heteropolyacid-catalyzed Hantzsch and Mannich multicomponent reactions. Ionic liquid effect probed by ESI-MS(/MS). Tetrahedron 70(20):3306–3313

    Article  CAS  Google Scholar 

  70. Demirkol O, Akbaslar D, Giray S, Anil BB (2014) One-pot synthesis of mannich bases under solvent-free conditions. Synth Commun 44(9):1279–1285

    Article  CAS  Google Scholar 

  71. Pirrung MC, Sarma KD (2005) Aqueous medium effects on multi-component reactions. Tetrahedron 61(48):11456–11472

    Article  CAS  Google Scholar 

  72. Andrade CKZ, Takada SCS, Suarez PAZ, Alves MB (2006) Revisiting the passerini reaction under eco-friendly reaction conditions. Synlett 10:1539–1542

    Article  Google Scholar 

  73. Koszelewski D, Szymanski W, Krysiak J, Ostaszewski R (2008) Solvent-free passerini reactions. Synth Commun 38(7):1120–1127

    Article  CAS  Google Scholar 

  74. Banfi L, Basso A, Chiappe C, De Moliner F, Riva R, Sonaglia L (2012) Development of a stereoselective Ugi reaction starting from an oxanorbornene β-amino acid derivative. Org Biomol Chem 10(19):3819–3829

    Article  CAS  PubMed  Google Scholar 

  75. Niu TF, Lu GP, Cai C (2011) The Ugi reaction in a polyethylene glycol medium: a mild, protocol for the production of compound libraries. J Chem Res 35(8):444–447

    CAS  Google Scholar 

  76. Jida M, Malaquin S, Deprez-Poulain R, Laconde G, Deprez B (2010) Synthesis of five- and six-membered lactams via solvent-free microwave Ugi reaction. Tetrahedron Lett 51(39):5109–5111

    Article  CAS  Google Scholar 

  77. Candeias NR, Veiros LF, Afonso CAM, Gois PMP (2009) Water: a suitable medium for the petasis Borono-Mannich reaction. Eur J Org Chem 2009(12):1859–1863

    Article  Google Scholar 

  78. Yadav JS, Reddy BVS, Lakshmi PN (2007) Ionic liquid accelerated Petasis reaction: a green protocol for the synthesis of alkylaminophenols. J Mol Catal A Chem 274(1–2):101–104

    Article  CAS  Google Scholar 

  79. Nun P, Martinez J, Lamaty F (2010) Microwave-assisted neat procedure for the petasis reaction. Synthesis 12:2063–2068

    Google Scholar 

  80. Shaabani A, Soleimani E, Maleki A (2006) Ionic liquid promoted one-pot synthesis of 3-aminoimidazo[1,2-a]pyridines. Tetrahedron Lett 47(18):3031–3034

    Article  CAS  Google Scholar 

  81. Vidyacharan S, Shinde AH, Satpathi B, Sharada DS (2014) A facile protocol for the synthesis of 3-aminoimidazo-fused heterocycles via the Groebke–Blackburn–Bienayme reaction under catalyst-free and solvent-free conditions. Green Chem 16(3):1168–1175

    Article  CAS  Google Scholar 

  82. Ohara M, Hara Y, Ohnuki T, Nakamura S (2014) Direct enantioselective three-component synthesis of optically active propargylamines in water. Chem Eur J 20(29):8848–8851

    CAS  PubMed  Google Scholar 

  83. Li ZG, Wei CM, Chen L, Varma RS, Li CJ (2004) Three-component coupling of aldehyde, alkyne, and amine catalyzed by silver in ionic liquid. Tetrahedron Lett 45(11):2443–2446

    Article  CAS  Google Scholar 

  84. Zhang Q, Chen J-X, Gao W-X, Ding J-C, Wu H-Y (2010) Copper-catalyzed one-pot synthesis of propargylamines via C-H activation in PEG. Appl Organomet Chem 24(11):809–812

    Article  CAS  Google Scholar 

  85. Kabalka GW, Wang L, Pagni RM (2001) A microwave-enhanced, solventless mannich condensation on CuI-doped alumina. Synlett 2001(05):0676–0678

    Article  Google Scholar 

  86. Hügel H (2009) Microwave multicomponent synthesis. Molecules 14(12):4936–4972

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kruithof A, Ruijter E, Orru RVA (2012) Microwave-assisted multicomponent reactions in the synthesis of heterocycles in microwaves in organic synthesis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1099–1171

    Google Scholar 

  88. Moseley JD, Kappe CO (2011) A critical assessment of the greenness and energy efficiency of microwave-assisted organic synthesis. Green Chem 13(4):794–806

    Article  CAS  Google Scholar 

  89. Gawande MB, Bonifacio VDB, Luque R, Branco PS, Varma RS (2014) Solvent-free and catalysts-free chemistry: a benign pathway to sustainability. ChemSusChem 7(1):24–44

    Article  CAS  PubMed  Google Scholar 

  90. Banitaba SH, Safari J, Khalili SD (2013) Ultrasound promoted one-pot synthesis of 2-amino-4,8-dihydropyrano[3,2-b]pyran-3-carbonitrile scaffolds in aqueous media: a complementary ‘green chemistry’ tool to organic synthesis. Ultrason Sonochem 20(1):401–407

    Article  CAS  PubMed  Google Scholar 

  91. Chandralekha E, Thangamani A, Valliappan R (2013) Ultrasound-promoted regioselective and stereoselective synthesis of novel spiroindanedionepyrrolizidines by multicomponent 1,3-dipolar cycloaddition of azomethine ylides. Res Chem Intermed 39(3):961–972

    Article  CAS  Google Scholar 

  92. Dandia A, Gupta SL, Parewa V (2014) An efficient ultrasound-assisted one-pot chemoselective synthesis of pyrazolo[3,4-b] pyridine-5-carbonitriles in aqueous medium using NaCl as a catalyst. RSC Adv 4(14):6908–6915

    Article  CAS  Google Scholar 

  93. Yu SJ, Zhu C, Bian Q, Cui C, Du XJ, Li ZM, Zhao WG (2014) Novel ultrasound-promoted parallel synthesis of trifluoroatrolactamide library via a one-pot Passerini/hydrolysis reaction sequence and their fungicidal activities. ACS Comb Sci 16(1):17–23

    Article  CAS  PubMed  Google Scholar 

  94. Pagadala R, Maddila S, Jonnalagadda SB (2014) Ultrasonic-mediated catalyst-free rapid protocol for the multicomponent synthesis of dihydroquinoline derivatives in aqueous media. Green Chem Lett Rev 7(2):131–136

    Article  Google Scholar 

  95. Siddekha A, Azzam SHS, Pasha MA (2014) Ultrasound-assisted, one-pot, four-component synthesis of 1,4,6,8-tetrahydroquinolines in aqueous medium. Synth Commun 44(3):424–432

    Article  CAS  Google Scholar 

  96. Nagalapalli R, Jaggavarapu SR, Jalli VP, Kamalakaran AS, Gaddamanugu G (2013) Ultrasound promoted green and facile one-pot multicomponent synthesis of 3,4-dihydropyrano[c]chromene derivatives. J Chem 2013:593803

    Article  Google Scholar 

  97. Brahmachari G, Das S (2014) L-Proline catalyzed multicomponent one-pot synthesis of gem-diheteroarylmethane derivatives using facile grinding operation under solvent-free conditions at room temperature. RSC Adv 4(15):7380–7388

    Article  CAS  Google Scholar 

  98. Maleki A, Javanshir S, Naimabadi M (2014) Facile synthesis of imidazo[1,2-a]pyridines via a one-pot three-component reaction under solvent-free mechanochemical ball-milling conditions. RSC Adv 4(57):30229–30232

    Article  CAS  Google Scholar 

  99. Cukalovic A, Monbaliu J-CMR, Stevens CV (2010) Microreactor technology as an efficient tool for multicomponent reactions, vol 23. Springer, Berlin

    Google Scholar 

  100. de Graaff C, Ruijter E, Orru RVA (2012) Recent developments in asymmetric multicomponent reactions. Chem Soc Rev 41(10):3969–4009

    Article  PubMed  Google Scholar 

  101. Clavier H, Pellissier H (2012) Recent developments in enantioselective metal-catalyzed Domino reactions. Adv Synth Catal 354(18):3347–3403

    Article  CAS  Google Scholar 

  102. Pellissier H (2012) Stereocontrolled Domino reactions. Chem Rev 113(1):442–524

    Article  PubMed  Google Scholar 

  103. Pellissier H (2013) Recent developments in enantioselective multicatalysed tandem reactions. Tetrahedron 69(35):7171–7210

    Article  CAS  Google Scholar 

  104. Mehta VP, Modha SG, Ruijter E, Van Hecke K, Van Meervelt L, Pannecouque C, Balzarini J, Orru RVA, Van der Eycken E (2011) A microwave-assisted diastereoselective multicomponent reaction to access dibenzo[c,e]azepinones: synthesis and biological evaluation. J Org Chem 76(8):2828–2839

    Article  CAS  PubMed  Google Scholar 

  105. Li Y, Xu M-H (2012) Lewis acid promoted highly diastereoselective petasis Borono-Mannich reaction: efficient synthesis of optically active β,γ-unsaturated α-amino acids. Org Lett 14(8):2062–2065

    Article  CAS  PubMed  Google Scholar 

  106. Wang G, Li B, Lou Q, Li Z, Meng X (2013) Diastereoselective povarov-like reaction involving O-pivaloylated D-galactosylimine. Adv Synth Catal 355(2–3):303–307

    CAS  Google Scholar 

  107. Jiang J, Guan X, Liu S, Ren B, Ma X, Guo X, Lv F, Wu X, Hu W (2013) Highly diastereoselective multicomponent cascade reactions: efficient synthesis of functionalized 1-indanols. Angew Chem 125(5):1579–1582

    Article  Google Scholar 

  108. Meng FK, Haeffner F, Hoveyda AH (2014) Diastereo- and enantioselective reactions of bis(pinacolato)diboron, 1,3-enynes, and aldehydes catalyzed by an easily accessible bisphosphine–Cu complex. J Am Chem Soc 136(32):11304–11307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Du H, Rodriguez J, Bugaut X, Constantieux T (2014) Organocatalytic enantioselective multicomponent synthesis of pyrrolopiperazines. Adv Synth Catal 356(4):851–856

    Article  CAS  Google Scholar 

  110. Wang Y, Tu MS, Shi F, Tu SJ (2014) Enantioselective construction of the biologically significant dibenzo[1,4]diazepine scaffold via organocatalytic asymmetric three-component reactions. Adv Synth Catal 356(9):2009–2019

    Article  CAS  Google Scholar 

  111. Calleja J, Gonzalez-Perez AB, de Lera AR, Alvarez R, Fananas FJ, Rodriguez F (2014) Enantioselective synthesis of hexahydrofuro[3,2-c] quinolines through a multicatalytic and multicomponent process. A new “aromatic sandwich” model for BINOL-phosphoric acid catalyzed reactions. Chem Sci 5(3):996–1007

    Article  CAS  Google Scholar 

  112. Salahi F, Taghizadeh MJ, Arvinnezhad H, Moemeni M, Jadidi K, Notash B (2014) An efficient, one-pot, three-component procedure for the synthesis of chiral spirooxindolopyrrolizidines via catalytic highly enantioselective 1,3-dipolar cycloaddition. Tetrahedron Lett 55(9):1515–1518

    Article  CAS  Google Scholar 

  113. McGrath KP, Hoveyda AH (2014) A multicomponent Ni-, Zr-, and Cu-catalyzed strategy for enantioselective synthesis of alkenyl-substituted quaternary carbons. Angew Chem Int Ed 53(7):1910–1914

    Article  CAS  Google Scholar 

  114. Jiang J, Ma XC, Ji CG, Guo ZQ, Shi TD, Liu SY, Hu WH (2014) Ruthenium(II)/chiral Brønsted acid co-catalyzed enantioselective four-component reaction/cascade Aza-Michael addition for efficient construction of 1,3,4-tetrasubstituted tetrahydroisoquinolines. Chem Eur J 20(6):1505–1509

    Article  CAS  PubMed  Google Scholar 

  115. Hashimoto T, Takiguchi Y, Maruoka K (2013) Catalytic asymmetric three-component 1,3-dipolar cycloaddition of aldehydes, hydrazides, and alkynes. J Am Chem Soc 135(31):11473–11476

    Article  CAS  PubMed  Google Scholar 

  116. Shi F, Tan W, Zhu RY, Xing GJ, Tu SJ (2013) Catalytic asymmetric five-component tandem reaction: diastereo- and enantioselective synthesis of densely functionalized tetrahydropyridines with biological importance. Adv Synth Catal 355(8):1605–1622

    Article  CAS  Google Scholar 

  117. Qian Y, Jing CC, Liu SY, Hu WH (2013) A highly enantioselective four-component reaction for the efficient construction of chiral β-hydroxy-α-amino acid derivatives. Chem Commun 49(26):2700–2702

    Article  CAS  Google Scholar 

  118. Gandhi S, List B (2013) Catalytic asymmetric three-component synthesis of homoallylic amines. Angew Chem Int Ed 52(9):2573–2576

    Article  CAS  Google Scholar 

  119. Chen ZL, Wang BL, Wang ZB, Zhu GY, Sun JW (2013) Complex bioactive alkaloid-type polycycles through efficient catalytic asymmetric multicomponent Aza-Diels–Alder reaction of indoles with oxetane as directing group. Angew Chem Int Ed 52(7):2027–2031

    Article  CAS  Google Scholar 

  120. Ortín I, Dixon DJ (2014) Direct catalytic enantio- and diastereoselective mannich reaction of isocyanoacetates and ketimines. Angew Chem Int Ed 53(13):3462–3465

    Article  Google Scholar 

  121. Hayashi M, Iwanaga M, Shiomi N, Nakane D, Masuda H, Nakamura S (2014) Direct asymmetric mannich-type reaction of α-isocyanoacetates with ketimines using cinchona alkaloid/copper(II) catalysts. Angew Chem Int Ed 53(32):8411–8415

    Article  CAS  Google Scholar 

  122. Hashimoto T, Kimura H, Kawamata Y, Maruoka K (2012) A catalytic asymmetric ugi-type reaction with acyclic azomethine imines. Angew Chem Int Ed 51(29):7279–7281

    Article  CAS  Google Scholar 

  123. Su YP, Bouma MJ, Alcaraz L, Stocks M, Furber M, Masson G, Zhu JP (2012) Organocatalytic enantioselective one-pot four-component Ugi-type multicomponent reaction for the synthesis of epoxy-tetrahydropyrrolo[3,4-b]pyridin-5-ones. Chem Eur J 18(40):12624–12627

    Article  CAS  PubMed  Google Scholar 

  124. Yue T, Wang MX, Wang DX, Masson G, Zhu JP (2009) Brønsted acid catalyzed enantioselective three-component reaction involving the α addition of isocyanides to imines. Angew Chem Int Ed 48(36):6717–6721

    Article  CAS  Google Scholar 

  125. Zhao W, Huang L, Guan Y, Wulff WD (2014) Three-component asymmetric catalytic Ugi reaction—concinnity from diversity by substrate-mediated catalyst assembly. Angew Chem Int Ed 53(13):3436–3441

    Article  CAS  Google Scholar 

  126. Wende RC, Schreiner PR (2012) Evolution of asymmetric organocatalysis: multi- and retrocatalysis. Green Chem 14(7):1821–1849

    Article  CAS  Google Scholar 

  127. An D, Fan Y-S, Gao Y, Zhu Z-Q, Zheng L-Y, Zhang S-Q (2014) Highly enantioselective biginelli reaction catalyzed by double axially chiral bisphosphorylimides. Eur J Org Chem 2014(2):301–306

    Article  CAS  Google Scholar 

  128. Hahn R, Raabe G, Enders D (2014) Asymmetric synthesis of highly functionalized tetrahydropyrans via a one-pot organocatalytic Michael/Henry/ketalization sequence. Org Lett 16(14):3636–3639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Blümel M, Chauhan P, Hahn R, Raabe G, Enders D (2014) Asymmetric synthesis of tetrahydropyridines via an organocatalytic one-pot multicomponent Michael/Aza-Henry/cyclization triple domino reaction. Org Lett 16(22):6012–6015

    Article  PubMed  PubMed Central  Google Scholar 

  130. Wenda S, Illner S, Mell A, Kragl U (2011) Industrial biotechnology—the future of green chemistry? Green Chem 13(11):3007–3047

    Article  CAS  Google Scholar 

  131. Ghislieri D, Green AP, Pontini M, Willies SC, Rowles I, Frank A, Grogan G, Turner NJ (2013) Engineering an enantioselective amine oxidase for the synthesis of pharmaceutical building blocks and alkaloid natural products. J Am Chem Soc 135(29):10863–10869

    Article  CAS  PubMed  Google Scholar 

  132. Yang Y, Liu J, Li Z (2014) Engineering of P450pyr hydroxylase for the highly regio- and enantioselective subterminal hydroxylation of alkanes. Angew Chem Int Ed 53(12):3120–3124

    Article  CAS  Google Scholar 

  133. Shoji O, Kunimatsu T, Kawakami N, Watanabe Y (2013) Highly selective hydroxylation of benzene to phenol by wild-type cytochrome P450BM3 assisted by decoy molecules. Angew Chem Int Ed 52(26):6606–6610

    Article  CAS  Google Scholar 

  134. Banfi L, Basso A, Moni L, Riva R (2014) The alternative route to enantiopure multicomponent reaction products: biocatalytic or organocatalytic enantioselective production of inputs for multicomponent reactions. Eur J Org Chem 10:2005–2015

    Article  Google Scholar 

  135. Barrow JC, Nantermet PG, Selnick HG, Glass KL, Rittle KE, Gilbert KF, Steele TG, Homnick CF, Freidinger RM, Ransom RW, Kling P, Reiss D, Broten TP, Schorn TW, Chang RSL, O’Malley SS, Olah TV, Ellis JD, Barrish A, Kassahun K, Leppert P, Nagarathnam D, Forray C (2000) In vitro and in vivo evaluation of dihydropyrimidinone C-5 amides as potent and selective α1A receptor antagonists for the treatment of benign prostatic hyperplasia. J Med Chem 43(14):2703–2718

    Article  CAS  PubMed  Google Scholar 

  136. Reinart-Okugbeni R, Ausmees K, Kriis K, Werner F, Rinken A, Kanger T (2012) Chemoenzymatic synthesis and evaluation of 3-azabicyclo[3.2.0]heptane derivatives as dopaminergic ligands. Eur J Med Chem 55:255–261

    Article  CAS  PubMed  Google Scholar 

  137. Li K, He T, Li C, Feng XW, Wang N, Yu XQ (2009) Lipase-catalysed direct Mannich reaction in water: utilization of biocatalytic promiscuity for C–C bond formation in a “one-pot” synthesis. Green Chem 11(6):777–779

    Article  CAS  Google Scholar 

  138. Chai S-J, Lai Y-F, Zheng H, Zhang P-F (2010) A novel trypsin-catalyzed three-component Mannich reaction. Helv Chim Acta 93(11):2231–2236

    Article  CAS  Google Scholar 

  139. Li W, Zhou G, Zhang P, Lai Y, Xu S (2011) One-pot synthesis of dihydropyrimidiones via environmentally friendly enzyme-catalyzed biginelli reaction. Heterocycles 83(9):2067–2077

    Article  CAS  Google Scholar 

  140. Sharma UK, Sharma N, Kumar R, Sinha AK (2013) Biocatalysts for multicomponent Biginelli reaction: bovine serum albumin triggered waste-free synthesis of 3,4-dihydropyrimidin-2-(1H)-ones. Amino Acids 44(3):1031–1037

    Article  CAS  PubMed  Google Scholar 

  141. Wang JL, Liu BK, Yin C, Wu Q, Lin XF (2011) Candida antarctica lipase B-catalyzed the unprecedented three-component Hantzsch-type reaction of aldehyde with acetamide and 1,3-dicarbonyl compounds in non-aqueous solvent. Tetrahedron 67(14):2689–2692

    Article  CAS  Google Scholar 

  142. Xu JC, Li WM, Zheng H, Lai YF, Zhang PF (2011) One-pot synthesis of tetrahydrochromene derivatives catalyzed by lipase. Tetrahedron 67(49):9582–9587

    Article  CAS  Google Scholar 

  143. Chai S-J, Lai Y-F, Xu J-C, Zheng H, Zhu Q, Zhang P-F (2011) One-pot synthesis of spirooxindole derivatives catalyzed by lipase in the presence of water. Adv Synth Catal 353(2–3):371–375

    Article  CAS  Google Scholar 

  144. Liu Z-Q, Liu B-K, Wu Q, Lin X-F (2011) Diastereoselective enzymatic synthesis of highly substituted 3,4-dihydropyridin-2-ones via domino Knoevenagel condensation–Michael addition–intramolecular cyclization. Tetrahedron 67(50):9736–9740

    Article  CAS  Google Scholar 

  145. Bora PP, Bihani M, Bez G (2013) Multicomponent synthesis of dihydropyrano[2,3-c]pyrazoles catalyzed by lipase from Aspergillus niger. J Mol Catal B Enzym 92:24–33

    Article  CAS  Google Scholar 

  146. Wang J-L, Chen X-Y, Wu Q, Lin X-F (2014) One-pot synthesis of spirooxazino derivatives via enzyme-initiated multicomponent reactions. Adv Synth Catal 356(5):999–1005

    Article  CAS  Google Scholar 

  147. Zheng H, Mei YJ, Du K, Shi QY, Zhang PF (2013) Trypsin-catalyzed one-pot multicomponent synthesis of 4-thiazolidinones. Catal Lett 143(3):298–301

    Article  CAS  Google Scholar 

  148. Avalani JR, Patel DS, Raval DK (2013) Saccharomyces cerevisiae catalyzed one pot synthesis of isoindolo[2,1-a]quinazoline performed under ultrasonication. J Mol Catal B Enzym 90:70–75

    Article  CAS  Google Scholar 

  149. Kłossowski S, Wiraszka B, Berłożecki S, Ostaszewski R (2013) Model studies on the first enzyme-catalyzed Ugi reaction. Org Lett 15(3):566–569

    Article  PubMed  Google Scholar 

  150. Ley SV (2012) On being green: can flow chemistry help? Chem Rec 12(4):378–390

    Article  CAS  PubMed  Google Scholar 

  151. Vaccaro L, Lanari D, Marrocchi A, Strappaveccia G (2014) Flow approaches towards sustainability. Green Chem 16(8):3680–3704

    Article  CAS  Google Scholar 

  152. Wegner J, Ceylan S, Kirschning A (2012) Flow chemistry – a key enabling technology for (multistep) organic synthesis. Adv Synth Catal 354(1):17–57

    Article  CAS  Google Scholar 

  153. Bremner WS, Organ MG (2007) Multicomponent reactions to form heterocycles by microwave-assisted continuous flow organic synthesis. ACS Comb Sci 9(1):14–16

    CAS  Google Scholar 

  154. Wegner J, Ceylan S, Kirschning A (2011) Ten key issues in modern flow chemistry. Chem Commun 47(16):4583–4592

    Article  CAS  Google Scholar 

  155. Wiles C, Watts P (2008) An integrated microreactor for the multicomponent synthesis of α-aminonitriles. Org Process Res Dev 12(5):1001–1006

    Article  CAS  Google Scholar 

  156. Bagley MC, Fusillo V, Jenkins RL, Lubinu MC, Mason C (2013) One-step synthesis of pyridines and dihydropyridines in a continuous flow microwave reactor. Beilstein J Org Chem 9:1957–1968

    Article  PubMed  PubMed Central  Google Scholar 

  157. Herath A, Cosford NDP (2010) One-step continuous flow synthesis of highly substituted pyrrole-3-carboxylic acid derivatives via in situ hydrolysis of tert-butyl esters. Org Lett 12(22):5182–5185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hamlin TA, Leadbeater NE (2013) Raman spectroscopy as a tool for monitoring mesoscale continuous-flow organic synthesis: equipment interface and assessment in four medicinally-relevant reactions. Beilstein J Org Chem 9:1843–1852

    Article  PubMed  PubMed Central  Google Scholar 

  159. Odedra A, Seeberger PH (2009) 5-(Pyrrolidin-2-yl)tetrazole-catalyzed Aldol and Mannich reactions: acceleration and lower catalyst loading in a continuous-flow reactor. Angew Chem Int Ed 48(15):2699–2702

    Article  CAS  Google Scholar 

  160. Sharma S, Maurya RA, Min K-I, Jeong G-Y, Kim D-P (2013) Odorless isocyanide chemistry: an integrated microfluidic system for a multistep reaction sequence. Angew Chem Int Ed 52(29):7564–7568

    Article  CAS  Google Scholar 

  161. Ceylan S, Coutable L, Wegner J, Kirschning A (2011) Inductive heating with magnetic materials inside flow reactors. Chemistry 17(6):1884–1893

    Article  CAS  PubMed  Google Scholar 

  162. Butler AJE, Thompson MJ, Maydom PJ, Newby JA, Guo K, Adams H, Chen B (2014) Regioselective synthesis of 3-aminoimidazo[1,2-a]-pyrimidines under continuous flow conditions. J Org Chem 79(21):10196–10202

    Article  CAS  PubMed  Google Scholar 

  163. Abahmane L, Kohler JM, Gross GA (2011) Gold-nanoparticle-catalyzed synthesis of propargylamines: the traditional A3-multicomponent reaction performed as a two-step flow process. Chemistry 17(10):3005–3010

    Article  CAS  PubMed  Google Scholar 

  164. Vlaar T, Ruijter E, Maes BUW, Orru RVA (2013) Palladium-catalyzed migratory insertion of isocyanides: an emerging platform in cross-coupling chemistry. Angew Chem Int Ed 52(28):7084–7097

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romano V. A. Orru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cioc, R., Ruijter, E., Orru, R.V.A. (2022). Multicomponent Synthesis: Cohesive Integration of Green Chemistry Principles. In: Richardson, P.F. (eds) Green Chemistry in Drug Discovery. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1579-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1579-9_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1577-5

  • Online ISBN: 978-1-0716-1579-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics