Skip to main content

Designing Efficient Cascade Reactions in Drug Discovery

  • Protocol
  • First Online:
Green Chemistry in Drug Discovery

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

This chapter focuses on the exploration and application of cascade reactions in the total synthesis of both biologically active natural products and their analogues and synthetic substances for drug discovery. The high synthetic efficiency of such processes enables the facile and rapid construction of bioactive molecules and furthermore streamlines the study of structure-activity relationships to accelerate the identification of potential drug-like compounds for further biological evaluation. In addition, the power of cascade strategies is also demonstrated in the pilot plant-scale synthesis of highly valued, structurally complex drugs and drug candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nicolaou KC, Edmonds DJ, Bulger PG (2006) Cascade reactions in total synthesis. Angew Chem Int Ed 45:7134–7186

    Article  CAS  Google Scholar 

  2. Nicolaou KC, Chen JS (2009) The art of total synthesis through cascade reactions. Chem Soc Rev 38:2993–3009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xu P-F, Wang W (2013) Catalytic cascade reactions. John Wiley & Sons, New York, NY

    Book  Google Scholar 

  4. Andrushko V, Andrushko N (2013) Stereoselective synthesis of drugs and natural products. Wiley, Hoboken, NJ

    Book  Google Scholar 

  5. Tietze LF, Brasche G, Gericke KM (2006) Domino reactions in organic synthesis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  6. Pellissier H (2006) Asymmetric domino reactions. Part A: Reactions based on the use of chiral auxiliaries. Tetrahedron 62:1619–1665

    Article  CAS  Google Scholar 

  7. Yu X, Wang W (2008) Organocatalysis: asymmetric cascade reactions catalysed by chiral secondary amines. Org Biomol Chem 6:2037–2046

    Article  CAS  PubMed  Google Scholar 

  8. Pellissier H (2006) Asymmetric domino reactions. Part B: reactions based on the use of chiral catalysts and biocatalysts. Tetrahedron 62:2143–2173

    Article  CAS  Google Scholar 

  9. Enders D, Grondal C, Huttl MRM (2007) Asymmetric organocatalytic domino reactions. Angew Chem Int Ed 46:1570–1581

    Article  CAS  Google Scholar 

  10. Vlaar T, Ruijter E, Orru RV (2011) A recent advances in palladium-catalyzed cascade cyclizations. Adv Synth Catal 353:809–841

    Article  CAS  Google Scholar 

  11. Ramachary DB, Jain S (2011) Sequential one-pot combination of multi-component and multi-catalysis cascade reactions: an emerging technology in organic synthesis. Org Biomol Chem 9:1277–1300

    Article  CAS  PubMed  Google Scholar 

  12. Lu L-Q, Chen J-R, Xiao W-J (2012) Development of cascade reactions for the concise construction of diverse heterocyclic architectures. Acc Chem Res 45:1278–1293

    Article  CAS  PubMed  Google Scholar 

  13. Pellissier H (2012) Recent developments in asymmetric organocatalytic domino reactions. Adv Synth Catal 354:237–294

    Article  CAS  Google Scholar 

  14. Tietze LF (2014) Domino reactions: concepts for efficient organic synthesis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  15. Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66:1022–1037

    Article  CAS  PubMed  Google Scholar 

  16. Kingston DG, Newman DJ (2005) The search for novel drug leads for predominately antitumor therapies by utilizing mother nature’s pharmacophoric libraries. Curr Opin Drug Discov Dev 8:207–227

    CAS  Google Scholar 

  17. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  CAS  PubMed  Google Scholar 

  18. Saklani A, Kutty SK (2008) Plant-derived compounds in clinical trials. Drug Discov Today 13:161–171

    Article  CAS  PubMed  Google Scholar 

  19. Ojima I (2008) Modern natural products chemistry and drug discovery. J Med Chem 51:2587–2588

    Article  CAS  PubMed  Google Scholar 

  20. Butler MS (2008) Natural products to drugs: natural product-derived compounds in clinical trials. Nat Prod Rep 25:475–516

    Article  CAS  PubMed  Google Scholar 

  21. Nicolaou KC, Peng X-S, Sun Y-P, Polet D, Zou B, Lim CS, Chen DYK (2009) Total synthesis and biological evaluation of cortistatins A and J and analogues thereof. J Am Chem Soc 131:10587–10597

    Article  CAS  PubMed  Google Scholar 

  22. Aoki S, Watanabe Y, Sanagawa M, Setiawan A, Kotoku N, Kobayashi M (2006) Cortistatins A, B, C, and D, anti-angiogenic steroidal alkaloids, from the marine sponge corticium simplex. J Am Chem Soc 128:3148–3149

    Article  CAS  PubMed  Google Scholar 

  23. Nicolaou KC, Sun Y-P, Peng X-S, Polet D, Chen DYK (2008) Total synthesis of (+)-cortistatin A. Angew Chem Int Ed 47:7310–7313

    Article  CAS  Google Scholar 

  24. Norman AW, Bouillon R, Thomasset M (2000) Vitamin D endocrine system: structural, biological, genetic and clinical aspects. University of California, Riverside, CA

    Google Scholar 

  25. Nagpal S, Na S, Rathnachalam R (2005) Noncalcemic actions of vitamin D receptor ligands. Endocr Rev 26:662–687

    Article  CAS  PubMed  Google Scholar 

  26. Campbell MJ, Adorini L (2006) The vitamin D receptor as a therapeutic target. Expert Opin Ther Targets 10:735–748

    Article  CAS  PubMed  Google Scholar 

  27. Takahashi T, Morikawa K (2006) Vitamin D receptor agonists: opportunities and challenges in drug discovery. Curr Top Med Chem 6:1303–1316

    Article  CAS  PubMed  Google Scholar 

  28. Gomez-Reino C, Vitale C, Maestro M, Mourino A (2005) Pd-catalyzed carbocyclization-Negishi cross-coupling cascade: a novel approach to 1alpha,25-dihydroxyvitamin D3 and analogues. Org Lett 7:5885–5887

    Article  CAS  PubMed  Google Scholar 

  29. Antony P, Sigüeiro R, Huet T, Sato Y, Ramalanjaona N, Rodrigues LC, Mouriño A, Moras D, Rochel N (2010) Structure–function relationships and crystal structures of the vitamin D receptor bound 2α-methyl-(20S, 23S)- and 2α-methyl-(20S, 23R)-epoxymethano-1α,25-dihydroxyvitamin D3. J Med Chem 53:1159–1171

    Article  CAS  PubMed  Google Scholar 

  30. Carballa DM, Seoane S, Zacconi F, Pérez X, Rumbo A, Alvarez-Díaz S, Larriba MJ, Pérez-Fernández R, Muñoz A, Maestro M, Mouriño A, Torneiro M (2012) Synthesis and biological evaluation of 1α,25-dihydroxyvitamin D3 analogues with a long side chain at C12 and short C17 side chains. J Med Chem 55:8642–8656

    Article  CAS  PubMed  Google Scholar 

  31. Carroll AR, Hyde E, Smith J, Quinn RJ, Guymer G, Forster PI (2005) Actinophyllic acid, a potent indole alkaloid inhibitor of the coupled enzyme assay carboxypeptidase U/hippuricase from the leaves of Alstonia actinophylla (Apocynaceae). J Org Chem 70:1096–1099

    Article  CAS  PubMed  Google Scholar 

  32. Granger BA, Jewett IT, Butler JD, Hua B, Knezevic CE, Parkinson EI, Hergenrother PJ, Martin SF (2013) Synthesis of (±)-actinophyllic acid and analogs: applications of cascade reactions and diverted total synthesis. J Am Chem Soc 135:12984–12986

    Article  CAS  PubMed  Google Scholar 

  33. Heilmann J, Mayr S, Brun R, Rali T, Sticher O (2000) Antiprotozoal activity and cytotoxicity of novel 1,7-dioxadispiro[5.1.5.2]pentadeca-9,12-dien-11-one derivatives from Amomum aculeatum. Helv Chim Acta 83:2939–2945

    Article  CAS  Google Scholar 

  34. Řezanka T, Guschina IA (2001) Macrolactone glycosides of three lichen acids from Acarospora gobiensis, a lichen of central Asia. Phytochemistry 58:1281–1287

    Article  PubMed  Google Scholar 

  35. Wong Y-S (2002) Synthesis of (±)-aculeatins A and B. Chem Commun:686–687

    Google Scholar 

  36. Peuchmaur M, Saïdani N, Botté C, Maréchal E, Vial H, Wong Y-S (2008) Enhanced antimalarial activity of novel synthetic aculeatin derivatives. J Med Chem 51:4870–4873

    Article  CAS  PubMed  Google Scholar 

  37. Fukuyama Y, Minami H, Takeuchi K, Kodama M, Kawazu K (1996) Neovibsanines A and B, unprecedented diterpenes from Viburnum awabuki. Tetrahedron Lett 37:6767–6770

    Article  CAS  Google Scholar 

  38. Fukuyama Y, Esumi T (2007) Chemistry and biological activity of vibsane-type diterpenes. J Syn Org Chem Jpn 65:585–597

    Article  CAS  Google Scholar 

  39. Chen AP, Muller CC, Cooper HM, Williams CM (2009) Total synthesis of (±)-4,5-bis-epi-neovibsanin A and B: a neurite outgrowth comparison study. Org Lett 11:3758–3761

    Article  CAS  PubMed  Google Scholar 

  40. Chien S-C, Chang J-Y, Kuo C-C, Hsieh C-C, Yang N-S, Kuo Y-H (2007) Cytotoxic and novel skeleton compounds from the heartwood of Chamaecyparis obtusa var. formosana. Tetrahedron Lett 48:1567–1569

    Article  CAS  Google Scholar 

  41. Oikawa H, Tokiwano T (2004) Enzymatic catalysis of the Diels-Alder reaction in the biosynthesis of natural products. Nat Prod Rep 21:321–352

    Article  CAS  PubMed  Google Scholar 

  42. Dong S, Hamel E, Bai R, Covell DG, Beutler JA, Porco JA Jr (2009) Enantioselective synthesis of (+)-chamaecypanone C: a novel microtubule inhibitor. Angew Chem Int Ed 48:1494–1497

    Article  CAS  Google Scholar 

  43. Dong S, Qin T, Hamel E, Beutler JA, Porco JA Jr (2012) Synthesis of chamaecypanone C analogues from in situ-generated cyclopentadienones and their biological evaluation. J Am Chem Soc 134:19782–19787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wurzel G, Becker H (1990) Sesquiterpenoids from the liverwort Ricciocarpos natans. Phytochemistry 29:2565–2568

    Article  CAS  Google Scholar 

  45. Wurzel G, Becker H, Eicher T, Tiefensee K (1990) Molluscicidal properties of constituents from the liverwort Ricciocarpos natans and of synthetic lunularic acid derivatives. Planta Med 56:444–445

    Article  CAS  PubMed  Google Scholar 

  46. Zinsmeister HD, Becker H, Eicher T (1991) Bryophytes, a source of biologically active, naturally occurring material? Angew Chem Int Ed 30:130–147

    Article  Google Scholar 

  47. Michrowska A, List B (2009) Concise synthesis of ricciocarpin A and discovery of a more potent analogue. Nat Chem 1:225–228

    Article  CAS  PubMed  Google Scholar 

  48. Yang JW, Hechavarria Fonseca MT, List B (2005) Catalytic asymmetric reductive Michael cyclization. J Am Chem Soc 127:15036–15037

    Article  CAS  PubMed  Google Scholar 

  49. Burke MD, Berger EM, Schreiber SL (2003) Generating diverse skeletons of small molecules combinatorially. Science 302:613–618

    Article  CAS  PubMed  Google Scholar 

  50. Tan DS (2005) Diversity-oriented synthesis: exploring the intersections between chemistry and biology. Nat Chem Biol 1:74–84

    Article  CAS  PubMed  Google Scholar 

  51. O’Connor CJ, Beckmann HSG, Spring DR (2012) Diversity-oriented synthesis: producing chemical tools for dissecting biology. Chem Soc Rev 41:4444–4456

    Article  Google Scholar 

  52. Galloway WRJD, Isidro-Llobet A, Spring DR (2010) Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nat Commun 1:Gal1/1–Gal1/13

    Article  CAS  Google Scholar 

  53. Trabocchi A, Schreiber SL (2013) Diversity-oriented synthesis: basics and applications in organic synthesis, drug discovery, and chemical biology. Wiley, Hoboken, NJ

    Book  Google Scholar 

  54. Kokatla HP, Sil D, Malladi SS, Balakrishna R, Hermanson AR, Fox LM, Wang X, Dixit A, David SA (2013) Exquisite selectivity for human toll-like receptor 8 in substituted furo[2,3-c]quinolines. J Med Chem 56:6871–6885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Naud S, Westwood IM, Faisal A, Sheldrake P, Bavetsias V, Atrash B, Cheung KM, Liu M, Hayes A, Schmitt J, Wood A, Choi V, Boxall K, Mak G, Gurden M, Valenti M, de Haven BA, Henley A, Baker R, McAndrew C, Matijssen B, Burke R, Hoelder S, Eccles SA, Raynaud FI, Linardopoulos S, van Montfort RL, Blagg J (2013) Structure-based design of orally bioavailable 1H-pyrrolo[3,2-c]pyridine inhibitors of mitotic kinase monopolar spindle 1 (MPS1). J Med Chem 56:10045–10065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pierre F, Chua PC, O’Brien SE, Siddiqui-Jain A, Bourbon P, Haddach M, Michaux J, Nagasawa J, Schwaebe MK, Stefan E, Vialettes A, Whitten JP, Chen TK, Darjania L, Stansfield R, Anderes K, Bliesath J, Drygin D, Ho C, Omori M, Proffitt C, Streiner N, Trent K, Rice WG, Ryckman DM (2011) Discovery and SAR of 5-(3-chlorophenylamino)benzo[c][2,6]naphthyridine-8-carboxylic acid (CX-4945), the first clinical stage inhibitor of protein kinase CK2 for the treatment of cancer. J Med Chem 54:635–654

    Article  CAS  PubMed  Google Scholar 

  57. Ohno H (2013) Gold-catalyzed cascade reactions of alkynes for construction of polycyclic compounds. Israel J Chem 53:869–882

    Article  CAS  Google Scholar 

  58. Podoll JD, Liu Y, Chang L, Walls S, Wang W, Wang X (2013) Bio-inspired synthesis yields a tricyclic indoline that selectively resensitizes methicillin-resistant Staphylococcus aureus (MRSA) to beta-lactam antibiotics. Proc Natl Acad Sci U S A 110:15573–15578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chang L, Podoll JD, Wang W, Walls S, O’Rourke CP, Wang X (2014) Structure–activity relationship studies of the tricyclic indoline resistance-modifying agent. J Med Chem 57:3803–3817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Carroll FI, Howell LL, Kuhar MJ (1999) Pharmacotherapies for treatment of cocaine abuse: preclinical aspects. J Med Chem 42:2721–2736

    Article  CAS  PubMed  Google Scholar 

  61. Smith MP, Hoepping A, Johnson KM, Trzcinska M, Kozikowski AP (1999) Dopaminergic agents for the treatment of cocaine abuse. Drug Discov Today 4:322–332

    Article  CAS  PubMed  Google Scholar 

  62. Singh S (2000) Chemistry, design, and structure–activity relationship of cocaine antagonists. Chem Rev 100:925–1024

    Article  CAS  PubMed  Google Scholar 

  63. Clarke R, Daum S, Gambino A, Aceto M, Pearl J, Levitt M, Cuminskey W, Bogado E (1973) Compounds affecting the central nervous system. 4. 3.beta.-phenyltropane-2-carboxylic esters and analogs. J Med Chem 16:1260–1267

    Article  CAS  PubMed  Google Scholar 

  64. Davies HML, Saikali E, Young WB (1991) Synthesis of (±)-ferruginine and (±)-anhydroecgonine methyl-ester by a tandem cyclopropanation/Cope rearrangement. J Org Chem 56:5696–5700

    Article  CAS  Google Scholar 

  65. Davies HML, Matasi JJ, Hodges LM, Huby NJS, Thornley C, Kong N, Houser JH (1997) Enantioselective synthesis of functionalized tropanes by rhodium(II) carboxylate-catalyzed decomposition of vinyldiazomethanes in the presence of pyrroles. J Org Chem 62:1095–1105

    Article  CAS  Google Scholar 

  66. Hemby SE, Co C, Reboussin D, Davies HM, Dworkin SI, Smith JE (1995) Comparison of a novel tropane analog of cocaine, 2 beta-propanoyl-3 beta-(4-tolyl) tropane with cocaine HCl in rats: nucleus accumbens extracellular dopamine concentration and motor activity. J Pharmacol Exp Ther 273:656–666

    CAS  PubMed  Google Scholar 

  67. Porrino LJ, Davies HM, Childers SR (1995) Behavioral and local cerebral metabolic effects of the novel tropane analog, 2 beta-propanoyl-3 beta-(4-tolyl)-tropane. J Pharmacol Exp Ther 272:901–910

    CAS  PubMed  Google Scholar 

  68. Bennett BA, Hollingsworth CK, Martin RS, Childers SR, Ehrenkaufer RE, Porrino LJ, Davies HM (1998) Prolonged dopamine and serotonin transporter inhibition after exposure to tropanes. Neuropharmacology 37:123–130

    Article  CAS  PubMed  Google Scholar 

  69. Daunais JB, Hart SL, Hedgecock-Rowe A, Matasi JJ, Thornley C, Davies HM, Porrino LJ (1997) Alterations in behavior and opioid gene expression induced by the novel tropane analog WF-31. Mol Brain Res 50:293–304

    Article  CAS  PubMed  Google Scholar 

  70. Hemby SE, Lucki I, Gatto G, Singh A, Thornley C, Matasi J, Kong N, Smith JE, Davies HM, Dworkin SI (1997) Potential antidepressant effects of novel tropane compounds, selective for serotonin or dopamine transporters. J Pharmacol Exp Ther 282:727–733

    CAS  PubMed  Google Scholar 

  71. Porrino LJ, Miller M, Hedgecock AA, Thornley C, Matasi JJ, Davies HM (1997) Local cerebral metabolic effects of the novel cocaine analog, WF-31: comparisons to fluoxetine. Synapse 27:26–35

    Article  CAS  PubMed  Google Scholar 

  72. Daunais JB, Hart SL, Smith HR, Letchworth SR, Davies HM, Sexton T, Bennett BA, Childers SR, Porrino LJ (1998) Long-acting blockade of biogenic amine transporters in rat brain by administration of the potent novel tropane 2beta-propanoyl-3beta-(2-naphthyl)-tropane. J Pharmacol Exp Ther 285:1246–1254

    CAS  PubMed  Google Scholar 

  73. Grondal C, Jeanty M, Enders D (2010) Organocatalytic cascade reactions as a new tool in total synthesis. Nat Chem 2:167–178

    Article  CAS  PubMed  Google Scholar 

  74. Volla CMR, Atodiresei I, Rueping M (2013) Catalytic C–C bond-forming multi-component cascade or domino reactions: pushing the boundaries of complexity in asymmetric organocatalysis. Chem Rev 114:2390–2431

    Article  PubMed  Google Scholar 

  75. Lan Y-B, Zhao H, Liu Z-M, Liu G-G, Tao J-C, Wang X-W (2011) Chiral counteranion synergistic organocatalysis under high temperature: efficient construction of optically pure spiro[cyclohexanone-oxindole] backbone. Org Lett 13:4866–4869

    Article  CAS  PubMed  Google Scholar 

  76. Wang Y, Han R-G, Zhao Y-L, Yang S, Xu P-F, Dixon DJ (2009) Asymmetric organocatalytic relay cascades: catalyst-controlled stereoisomer selection in the synthesis of functionalized cyclohexanes. Angew Chem Int Ed 48:9834–9838

    Article  CAS  Google Scholar 

  77. Wang Y, Yu D-F, Liu Y-Z, Wei H, Luo Y-C, Dixon DJ, Xu P-F (2010) Multiple-organocatalyst-promoted cascade reaction: a fast and efficient entry into fully substituted piperidines. Chem Eur J 16:3922–3925

    Article  CAS  PubMed  Google Scholar 

  78. Hashmi ASK, Hubbert C (2010) Gold and organocatalysis combined. Angew Chem Int Ed 49:1010–1012

    Article  CAS  Google Scholar 

  79. Zhong C, Shi X (2010) When organocatalysis meets transition-metal catalysis. Eur J Org Chem:2999–3025

    Google Scholar 

  80. Zhou J (2010) Recent advances in multicatalyst promoted asymmetric tandem reactions. Chem Asian J 5:422–434

    Article  CAS  PubMed  Google Scholar 

  81. Allen AE, MacMillan DWC (2012) Synergistic catalysis: a powerful synthetic strategy for new reaction development. Chem Sci 3:633–658

    Article  CAS  Google Scholar 

  82. Cohen DT, Scheidt KA (2012) Cooperative Lewis acid/N-heterocyclic carbene catalysis. Chem Sci 3:53–57

    Article  CAS  Google Scholar 

  83. Du Z, Shao Z (2013) Combining transition metal catalysis and organocatalysis - an update. Chem Soc Rev 42:1337–1378

    Article  CAS  PubMed  Google Scholar 

  84. Zhang Y, Wang S, Wu S, Zhu S, Dong G, Miao Z, Yao J, Zhang W, Sheng C, Wang W (2013) Facile construction of structurally diverse thiazolidinedione-derived compounds via divergent stereoselective cascade organocatalysis and their biological exploratory studies. ACS Comb Sci 15:298–308

    Article  PubMed  Google Scholar 

  85. Zhang G, Zhang Y, Yan J, Chen R, Wang S, Ma Y, Wang R (2012) One-pot enantioselective synthesis of functionalized pyranocoumarins and 2-amino-4H-chromenes: discovery of a type of potent antibacterial agent. J Org Chem 77:878–888

    Article  CAS  PubMed  Google Scholar 

  86. Dückert H, Pries V, Khedkar V, Menninger S, Bruss H, Bird AW, Maliga Z, Brockmeyer A, Janning P, Hyman A, Grimme S, Schürmann M, Preut H, Hübel K, Ziegler S, Kumar K, Waldmann H (2012) Natural product–inspired cascade synthesis yields modulators of centrosome integrity. Nat Chem Biol 8:179–184

    Article  Google Scholar 

  87. Bores GM, Kosley RW (1996) Galanthamine derivatives for the treatment of Alzheimer’s disease. Drugs Future 21:621–625

    CAS  Google Scholar 

  88. Raskind MA, Peskind ER, Wessel T, Yuan W (2000) Galantamine in AD: a 6-month randomized, placebo-controlled trial with a 6-month extension. The Galantamine USA-1 Study Group. Neurology 54:2261–2268

    Article  CAS  PubMed  Google Scholar 

  89. Küenburg B, Czollner L, Fröhlich J, Jordis U (1999) Development of a pilot scale process for the anti-Alzheimer drug (-)-galanthamine using large-scale phenolic oxidative coupling and crystallisation-induced chiral conversion. Org Process Res Dev 3:425–431

    Article  Google Scholar 

  90. Tanaka H, Kuroda A, Marusawa H, Hatanaka H, Kino T, Goto T, Hashimoto M, Taga T (1987) Structure of FK506, a novel immunosuppressant isolated from Streptomyces. J Am Chem Soc 109:5031–5033

    Article  CAS  Google Scholar 

  91. Hatanaka H, Kino T, Miyata S, Inamura N, Kuroda A, Goto T, Tanaka H, Okuhara M (1988) FR-900520 and FR-900523, novel immunosuppressants isolated from a Streptomyces. II. Fermentation, isolation and physico-chemical and biological characteristics. J Antibio 41:1592–1601

    Article  CAS  Google Scholar 

  92. Morisaki M, Arai T (1992) Identity of immunosuppressant FR-900520 with ascomycin. J Antibio 45:126–128

    Article  CAS  Google Scholar 

  93. Baumann K (1993) Preparation of tricyclic macrolides as drugs. European Patent 0569337, 10 Nov 1993

    Google Scholar 

  94. Koch G, Jeck R, Hartmann O, Küsters E (2001) Selective synthesis of a new ascomycin rearrangement product (SDZ ASD732) on a pilot plant scale. Org Process Res Dev 5:211–215

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from the NSF (CHE-1057569) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yu, C., Huang, H., Sheng, C., Wang, W. (2022). Designing Efficient Cascade Reactions in Drug Discovery. In: Richardson, P.F. (eds) Green Chemistry in Drug Discovery. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1579-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1579-9_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1577-5

  • Online ISBN: 978-1-0716-1579-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics