Skip to main content

Flow Chemistry as an Enabling Technology for Synthetic Organic Chemistry

  • Protocol
  • First Online:
Green Chemistry in Drug Discovery

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1240 Accesses

Abstract

Continuous-flow processing is proving to be an enabling technology for synthetic organic chemists. After an introduction to the advantages and disadvantages of flow processing and an overview of the equipment currently available, the use of flow chemistry in a range of avenues of organic chemistry is showcased. Attention is focused on areas such as hazardous transformations, multistep synthesis, photochemistry, electrochemistry, and organocatalysis. The scope of the chapter is also broadened to techniques used for monitoring flow processes and the incorporation of flow chemistry into the undergraduate teaching laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Darvas F, Dormán G, Hessel V (eds) (2014) Flow chemistry: volume 1 (fundamentals) and volume 2 (applications). DeGruyter, For books on flow chemistry see this reference

    Google Scholar 

  2. Reschetilowski W (ed) (2013) Microreactors in preparative chemistry: practical aspects in bioprocessing, nanotechnology, catalysis and more. Wiley-VCH, For books on flow chemistry see this reference

    Google Scholar 

  3. Wiles C, Watts P (2011) Micro reaction technology in organic synthesis. CRC Press, For books on flow chemistry see this reference

    Google Scholar 

  4. Luis SV, Garcia-Verdugo E (eds) (2010) Chemical reactions and processes under flow conditions. RSC Green Chemistry, For books on flow chemistry see this reference

    Google Scholar 

  5. Gutmann B, Cantillo D, Kappe CO (2015) Continuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredients. Angew Chem Int Ed. https://doi.org/10.1002/anie.201409318, For selected recent reviews, see this reference

  6. Jensen KF, Reizman BJ, Newman SG (2014) Tools for chemical synthesis in microsystems. Lab Chip 14:3206–3212, For selected recent reviews, see this reference

    Article  CAS  PubMed  Google Scholar 

  7. Baxendale IR (2013) The integration of flow reactors into synthetic organic chemistry. J Chem Technol Biotechnol 88:519–552, For selected recent reviews, see this reference

    Article  CAS  Google Scholar 

  8. Protasova LN, Bulut M, Ormerod D, Buekenhoudt A, Berton J, Stevens CV (2013) Latest highlights in liquid-phase reactions for organic synthesis in microreactors. Org Process Res Dev 17:760–791, For selected recent reviews, see this reference

    Article  CAS  Google Scholar 

  9. McQuade DT, Seeberger PH (2013) Applying flow chemistry: methods, materials, and multistep synthesis. J Org Chem 78:6384–6389, For selected recent reviews, see this reference

    Article  CAS  PubMed  Google Scholar 

  10. Deadman BJ, Browne DL, Baxendale IR, Ley SV (2015) Back pressure regulation of slurry-forming reactions in continuous flow. Chem Eng Technol 38:259–262. See this reference, for example

    Article  CAS  Google Scholar 

  11. Hartman RL (2012) Managing solids in microreactors for the upstream continuous processing of fine chemicals. Org Process Res Dev 16:870–887. See this reference, for example

    Article  CAS  Google Scholar 

  12. Browne DL, Deadman BJ, Ashe R, Baxendale IR, Ley SV (2011) Continuous flow processing of slurries: evaluation of an agitated cell reactor. Org Process Res Dev 15:693–697. See this reference, for example

    Article  CAS  Google Scholar 

  13. Hartman RL, Naber JR, Zaborenko N, Buchwald SL, Jensen KF (2010) Overcoming the challenges of solid bridging and constriction during Pd-catalyzed C−N bond formation in microreactors. Org Process Res Dev 14:1347–1357. See this reference, for example

    Article  CAS  Google Scholar 

  14. Roberge DM, Ducry L, Bieler N, Cretton P, Zimmermann B (2005) Chem Eng Technol 28:318–323. See this reference, for example

    Article  CAS  Google Scholar 

  15. Vaccaro L, Lanari D, Marrocchi A, Strappaveccia G (2014) Flow approaches towards sustainability. Green Chem 16:3680–3704. For reviews see this reference

    Article  CAS  Google Scholar 

  16. Wiles C, Watts P (2014) Continuous process technology: a tool for sustainable production. Green Chem 16:55–62. For reviews see this reference

    Article  CAS  Google Scholar 

  17. Wiles C, Watts P (2014) Continuous flow reactors: a perspective. Green Chem 16:38–54. For reviews see this reference

    Google Scholar 

  18. Newman SG, Jensen KF (2013) The role of flow in green chemistry and engineering. Green Chem 15:1465–1472. For reviews see this reference

    Article  Google Scholar 

  19. Fekete M, Glasnov T (2014) Technology overview /overview of the devices. In: Darvas F, Dormán G, Hessel V (eds) Flow chemistry: volume 1. DeGruyter. For an overview of equipment currently available, see this reference

    Google Scholar 

  20. Glasnov TN, Kappe CO (2011) The microwave-to-flow paradigm: translating high-temperature batch microwave chemistry to scalable continuous-flow processes. Chem Eur J 17:11956–11968

    Article  CAS  PubMed  Google Scholar 

  21. Noel T, Buchwald SL (2011) Cross-coupling in flow. Chem Soc Rev 40:5010–5029

    Article  CAS  PubMed  Google Scholar 

  22. Hessel V, Kralisch D, Kockmann N, Noël T, Wang Q (2013) Novel process windows for enabling, accelerating, and uplifting flow chemistry. ChemSusChem 6:746–789. For a review, see this reference

    Article  CAS  PubMed  Google Scholar 

  23. Lengyel LC, Sipos G, Sipőcz T, Vágó T, Dormán G, Gerencsér J, Makara G, Darvas F (2015) Synthesis of condensed heterocycles by the Gould-Jacobs reaction in a novel three-mode pyrolysis reactor. Org Process Res Dev 19:399–409. For examples, see this reference

    Article  CAS  Google Scholar 

  24. Kobayashi H, Driessen B, van Osch DJGP, Talla A, Ookawara S, Noël T, Hessel V (2013) The impact of novel process windows on the Claisen rearrangement. Tetrahedron 69:2885–2890. For examples, see this reference

    Article  CAS  Google Scholar 

  25. Cantillo D, Sheibani H, Kappe CO (2012) Flash flow pyrolysis: mimicking flash vacuum pyrolysis in a high-temperature/high-pressure liquid-phase microreactor environment. J Org Chem 77:2463–2473

    Article  CAS  PubMed  Google Scholar 

  26. Lengyel L, Nagy TZ, Sipos G, Jones RV, Dorman G, Urge L, Darvas F (2012) Highly efficient thermal cyclization reactions of alkylidene esters in continuous flow to give aromatic/heteroaromatic derivatives. Tetrahedron Lett 53:738–743

    Article  CAS  Google Scholar 

  27. Mudd WH, Stevens EP (2010) An efficient synthesis of rufinamide, an antiepileptic drug. Tetrahedron Lett 51:3229–3231

    Article  CAS  Google Scholar 

  28. Borukhova S, Noël T, Metten B, de Vos E, Hessel V (2013) Solvent- and catalyst-free Huisgen cycloaddition to rufinamide in flow with a greener, less expensive dipolarophile. ChemSusChem 6:2220–2225

    Article  CAS  PubMed  Google Scholar 

  29. Kelly CB, Lee CX, Leadbeater NE (2011) An approach for continuous-flow processing of reactions that involve the in situ formation of organic products. Tetrahedron Lett 52:263–265. See this reference for example

    Article  CAS  Google Scholar 

  30. Browne DL, Baumann M, Harji BH, Baxendale IR, Ley SV (2011) A new enabling technology for convenient laboratory scale continuous flow processing at low temperatures. Org Lett 13:3312–3315. See this reference for example

    Article  CAS  PubMed  Google Scholar 

  31. Gustafsson T, Sörensen H, Pontén F (2012) Development of a continuous flow scale-up approach of reflux inhibitor AZD6906. Org Process Res Dev 16:925–929. See this reference for example

    Article  CAS  Google Scholar 

  32. Hessel V, Hofmann C, Löwe H, Meudt A, Scherer S, Schönfeld F, Werner B (2004) Selectivity gains and energy savings for the industrial phenyl boronic acid process using micromixer/tubular reactors. Org Process Res Dev 8:511–523

    Article  CAS  Google Scholar 

  33. ThalesNano application note: cryogenic applications in flow chemistry enabled by the IceCube™ flow reactor—1st application: Swern oxidation. http://thalesnano.com/index.php?route=module/application_note/download&download=48. Accessed 2 Oct 2015

  34. Kawaguchi T, Miyata H, Ataka K, Mae K, Yoshida J-i (2005) Room-temperature Swern oxidations by using a microscale flow system. Angew Chem Int Ed 44:2413–2416

    Article  CAS  Google Scholar 

  35. Yoshida J-i (ed) (2008) Flash chemistry: fast organic synthesis in microsystems. Wiley. For an introduction to “flash chemistry”, see this reference

    Google Scholar 

  36. Yoshida J-i, Takahashia Y, Nagakia A (2013) Flash chemistry: flow chemistry that cannot be done in batch. Chem Commun 49:9896–9904. For reviews, see this reference

    Article  CAS  Google Scholar 

  37. Yoshida J-i, Nagaki A, Yamada T (2008) Flash chemistry: fast chemical synthesis by using microreactors. Chem Eur J 14:7450–7459. For reviews, see this reference

    Article  CAS  PubMed  Google Scholar 

  38. Hessel V, Lowe H, Schönfeld F (2005) Micromixers—a review on passive and active mixing principles. Chem Eng Sci 60:2479–2501. For background, see this reference

    Article  CAS  Google Scholar 

  39. Kakuta M, Bessoth FG, Manz A (2001) Microfabricated devices for fluid mixing and their application for chemical synthesis. Chem Rec 1:395–405. For background, see this reference

    Article  CAS  PubMed  Google Scholar 

  40. Young IS, Baran PS (2009) Protecting-group-free synthesis as an opportunity for invention. Nat Chem 1:193–205

    Article  CAS  PubMed  Google Scholar 

  41. Nagaki A, Matsuo C, Kim S, Saito K, Miyazaki A, Yoshida J-i (2012) Lithiation of 1,2-dichloroethene in flow microreactors: versatile synthesis of alkenes and alkynes by precise residence-time control. Angew Chem Int Ed 51:3245–3248. See this reference, for example

    Article  CAS  Google Scholar 

  42. Nagaki A, Kim H, Yoshida J-i (2009) Nitro-substituted aryl lithium compounds in microreactor synthesis: switch between kinetic and thermodynamic control. Angew Chem Int Ed 48:8063–8065. See this reference, for example

    Article  CAS  Google Scholar 

  43. Nagaki A, Kim H, Moriwaki Y, Matsuo C, Yoshida J-i (2010) A flow microreactor system enables organolithium reactions without protecting alkoxycarbonyl groups. Chem Eur J 16:11167–11177. See this reference, for example

    Article  CAS  PubMed  Google Scholar 

  44. Usutani H, Tomida Y, Nagaki A, Okamoto H, Nokami T, Yoshida J-i (2007) Generation and reactions of o-Bromophenyllithium without benzyne formation using a microreactor. J Am Chem Soc 129:3046–3047. See this reference, for example

    Article  CAS  PubMed  Google Scholar 

  45. Kim H, Nagaki A, Yoshida J-i (2011) A flow-microreactor approach to protecting-group-free synthesis using organolithium compounds. Nat Commun 2:264

    Article  PubMed  Google Scholar 

  46. Nagaki A, Imai K, Ishiuchi S, Yoshida J-i (2015) Reactions of difunctional electrophiles with functionalized aryllithium compounds: remarkable chemoselectivity by flash chemistry. Angew Chem Int Ed 54:1914–1918

    Article  CAS  Google Scholar 

  47. Webb D, Jamison TF (2012) Diisobutylaluminum hydride reductions revitalized: a fast, robust, and selective continuous flow system for aldehyde synthesis. Org Lett 14:568–571

    Article  CAS  PubMed  Google Scholar 

  48. Choi EJ, GSF L (2015) Manufacturing battlefield medicine: paradigm shift for pharmaceuticals. PDA J Pharm Sci Tech 68:312–312. The foundations are already being laid for this. See this reference

    Article  Google Scholar 

  49. Baxendale IR, Braatz RD, Hodnett BK, Jensen KF, Johnson MD, Sharratt P, Sherlock J-P, Florence AJ (2015) Achieving continuous manufacturing: technologies and approaches for synthesis, workup, and isolation of drug substance. J Pharm Sci 104:781–791. The foundations are already being laid for this. See this reference

    Article  CAS  PubMed  Google Scholar 

  50. Lee SL, O’Connor TF, Yang X, Cruz CN, Chatterjee S, Madurawe RD, Moore CMV, Yu LX, Woodcock J (2015) Modernizing pharmaceutical manufacturing: from batch to continuous production. J Pharm Innov. https://doi.org/10.1007/s12247-015-9215-8. The foundations are already being laid for this. See this reference

  51. Halder R, Lawal A, Damavarapu R (2007) Nitration of toluene in a microreactor. Catal Today 125:74–80

    Article  CAS  Google Scholar 

  52. Panke G, Schwalbe T, Stirner W, Taghavi-Moghadam S, Wille G (2003) A practical approach of continuous processing to high energetic nitration reactions in microreactors. Synthesis:2827–2830

    Google Scholar 

  53. Antes J, Boskovic D, Krause H, Loebbecke S, Lutz N, Tuercke T, Schweikert W (2003) Analysis and improvement of strong exothermic nitrations in microreactors. Chem Eng Res Des 81:760–765

    Article  CAS  Google Scholar 

  54. Ducry L, Roberge DM (2005) Controlled autocatalytic nitration of phenol in a microreactor. Angew Chem Int Ed 44:7972–7975

    Article  CAS  Google Scholar 

  55. Kulkarni AA, Kalyani VS, Joshi RA, Joshi RR (2009) Continuous flow nitration of benzaldehyde. Org Process Res Dev 13:999–1002

    Article  CAS  Google Scholar 

  56. Kulkarni AA, Nivangune NT, Kalyani VS, Joshi RA, Joshi RR (2008) Continuous flow nitration of salicylic acid. Org Process Res Dev 12:995–1000

    Article  CAS  Google Scholar 

  57. Newman SG, Gu L, Lesniak C, Victor G, Meschke F, Abahmane L, Jensen KF (2014) Rapid Wolff–Kishner reductions in a silicon carbide microreactor. Green Chem 16:176–180

    Article  CAS  Google Scholar 

  58. Pieber B, Martinez ST, Cantillo D, Kappe CO (2013) In situ generation of diimide from hydrazine and oxygen: continuous-flow transfer hydrogenation of Olefins. Angew Chem Int Ed 52:10241–10244

    Article  CAS  Google Scholar 

  59. Webb D, Jamison TF (2010) Continuous flow multi-step organic synthesis. Chem Sci 1:675–680. For an overview, see this reference

    Article  CAS  Google Scholar 

  60. Zhang P, Russell MG, Jamison TF (2014) Continuous flow total synthesis of rufinamide. Org Process Res Dev 18:1567–1570

    Article  CAS  Google Scholar 

  61. Murray PRD, Browne DL, Pastre JC, Butters C, Guthrie D, Ley SV (2013) Continuous flow-processing of organometallic reagents using an advanced peristaltic pumping system and the telescoped flow synthesis of (E/Z)-tamoxifen. Org Process Res Dev 17:1192–1208

    Article  CAS  Google Scholar 

  62. Kupracz L, Kirschning A (2013) Multiple organolithium generation in the continuous flow synthesis of amitriptyline. Adv Synth Catal 355:3375–3380

    Article  CAS  Google Scholar 

  63. Newby JA, Huck L, Blaylock DW, Witt PM, Ley SV, Browne DL (2014) Investigation of a lithium-halogen exchange flow process for the preparation of boronates by using a Cryo-Flow reactor. Chem Eur J 20:263–271. See this reference, for example

    Article  CAS  PubMed  Google Scholar 

  64. Varas AC, Noël T, Wang Q, Hessel V (2012) Copper(I)-catalyzed azide–alkyne cycloadditions in microflow: catalyst activity, high-T operation, and an integrated continuous copper scavenging unit. ChemSusChem 5:1703–1707. See this reference, for example

    Article  CAS  PubMed  Google Scholar 

  65. Cervera-Padrell AE, Morthensen ST, Lewandowski DJ, Skovby T, Kiil S, Gernaey KV (2012) Continuous hydrolysis and liquid–liquid phase separation of an active pharmaceutical ingredient intermediate using a miniscale hydrophobic membrane separator. Org Process Res Dev 16:888–900. See this reference, for example

    Article  CAS  Google Scholar 

  66. Hu DX, O’Brien M, Ley SV (2012) Continuous multiple liquid–liquid separation: diazotization of amino acids in flow. Org Lett 14:4246–4249. See this reference, for example

    Article  CAS  PubMed  Google Scholar 

  67. O’Brien M, Koos P, Browne DL, Ley SV (2012) A prototype continuous-flow liquid–liquid extraction system using open-source technology. Org Biomol Chem 10:7031–7036. See this reference, for example

    Article  PubMed  Google Scholar 

  68. Sahoo HR, Kralj JG, Jensen KF (2007) Multistep continuous-flow microchemical synthesis involving multiple reactions and separations. Angew Chem Int Ed 46:5704–5708. See this reference, for example

    Article  CAS  Google Scholar 

  69. Hamlin TA, Kelly CB, Cywar RM, Leadbeater NE (2014) Methylenation of perfluoroalkyl ketones using a Peterson olefination approach. J Org Chem 79:1145–1155

    Article  CAS  PubMed  Google Scholar 

  70. Hamlin TA, Lazarus GML, Kelly CB, Leadbeater NE (2014) A continuous-flow approach to 3,3,3-trifluoromethylpropenes: bringing together Grignard addition, Peterson elimination, inline extraction, and solvent switching. Org Process Res Dev 18:1253–1258

    Article  CAS  Google Scholar 

  71. Adamo A, Heider PL, Weeranoppanant N, Jensen KF (2013) Membrane-based, liquid–liquid separator with integrated pressure control. Ind Eng Chem Res 52:10802–10808

    Article  CAS  Google Scholar 

  72. Snead DR, Jamison TF (2015) A three-minute synthesis and purification of ibuprofen: pushing the limits of continuous-flow processing. Angew Chem Int Ed 54:983–987

    Article  CAS  Google Scholar 

  73. Hodge P (2005) Synthesis of organic compounds using polymer-supported reagents, catalysts, and/or scavengers in benchtop flow systems. Ind Eng Chem Res 44:8542–8553. For background on the use of supported reagents, catalysts, and scavengers in flow chemistry, see this reference

    Article  CAS  Google Scholar 

  74. Baumann M, Baxendale IR, Ley SV (2011) The flow synthesis of heterocycles for natural product and medicinal chemistry applications. Mol Divers 15:613–630. See this reference, for example

    Article  CAS  PubMed  Google Scholar 

  75. Seeberger PH (2009) Organic synthesis: scavengers in full flow. Nature Chem 1:258–260

    Article  CAS  Google Scholar 

  76. Baxendale IR, Ley SV, Mansfield AC, Smith CD (2009) Multistep synthesis using modular flow reactors: Bestmann–Ohira reagent for the formation of alkynes and triazoles. Angew Chem Int Ed 48:4017–4021

    Article  CAS  Google Scholar 

  77. Rojo MV, Guetzoyan L, Baxendale IR (2015) A monolith immobilised iridium Cp* catalyst for hydrogen transfer reactions under flow conditions. Org Biomol Chem 13:1768–1777. For examples, see this reference

    Article  CAS  PubMed  Google Scholar 

  78. Maestre L, Ozkal E, Ayats C, Beltrán Á, Díaz-Requejo MM, Pérez PJ, Pericàs MA (2015) A fully recyclable heterogenized Cu catalyst for the general carbene transfer reaction in batch and flow. Chem Sci 6:1510–1515. For examples, see this reference

    Article  CAS  PubMed  Google Scholar 

  79. Reynolds WR, Plucinski P, Frost CG (2014) Robust and reusable supported palladium catalysts for cross-coupling reactions in flow. Cat Sci Technol 4:948–954. For examples, see this reference

    Article  CAS  Google Scholar 

  80. Battilocchio C, Hawkins JM, Ley SV (2014) Mild and selective heterogeneous catalytic hydration of nitriles to amides by flowing through manganese dioxide. Org Lett 16:1060–1063. For examples, see this reference

    Article  CAS  PubMed  Google Scholar 

  81. Baxendale IR, Ley SV (2006) Solid supported reagents in multi-step flow synthesis. Ernst Schering Found Symp Proc 3:151–185. For background, see this reference

    Google Scholar 

  82. Baumann M, Baxendale IR (2013) The rapid generation of isothiocyanates in flow. Beilstein J Org Chem 9:1613–1619. For examples, see this reference

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hopkin MD, Baxendale IR, Ley SV (2010) A flow-based synthesis of Imatinib: the API of Gleevec. Chem Commun 46:2450–2452. For examples, see this reference

    Article  CAS  Google Scholar 

  84. Pastre JC, Browne DL, Ley SV (2013) Flow chemistry syntheses of natural products. Chem Soc Rev 42:8849–8869

    Article  CAS  PubMed  Google Scholar 

  85. Baxendale IR, Deeley J, Griffiths-Jones CM, Ley SV, Saaby S, Tranmer GK (2006) A flow process for the multi-step synthesis of the alkaloid natural product oxomaritidine: a new paradigm for molecular assembly. Chem Commun:2566–2568

    Google Scholar 

  86. Tsubogo T, Oyamada H, Kobayashi S (2015) Multistep continuous-flow synthesis of (R)- and (S)-rolipram using heterogeneous catalysts. Nature 520:329–332

    Article  CAS  PubMed  Google Scholar 

  87. Riva E, Rencurosi A, Gagliardi S, Passarella D, Martinelli M (2011) Synthesis of (+)-dumetorine and congeners by using flow chemistry technologies. Chem Eur J 17:6221–6226

    Article  CAS  PubMed  Google Scholar 

  88. Newton S, Carter CF, Pearson CM, de Alves CL, Lange H, Thansandote P, Ley SV (2014) Accelerating spirocyclic polyketide synthesis using flow chemistry. Angew Chem Int Ed 53:4915–4920

    Article  CAS  Google Scholar 

  89. Holmes N, Bourne RA (2014) Analysis and optimisation of continuous processes. In: Letcher T, Scott J, Patterson DA (eds) Chemical processes for a sustainable future. Royal Society of Chemistry. For a perspective, see this reference

    Google Scholar 

  90. Yue J, Schouten JC, Nijhuis TA (2012) Integration of microreactors with spectroscopic detection for online reaction monitoring and catalyst characterization. Ind Eng Chem Res 51:14583–14609. For a perspective, see this reference

    Article  CAS  Google Scholar 

  91. Ferstl W, Klahn T, Schweikert W, Billeb G, Schwarzer M, Loebbecke S (2007) Inline analysis in microreaction technology: a suitable tool for process screening and optimization. Chem Eng Technol 30:370–378. For a perspective, see this reference

    Article  CAS  Google Scholar 

  92. STR M, Murat A, Maillos D, Lesimple P, Hellier P, Wirth T (2015) Rapid generation and safe use of carbenes enabled by a novel flow protocol with in-line IR spectroscopy. Chem Eur J 21:7016–7020. For selected examples, see this reference

    Article  Google Scholar 

  93. Rydzak JW, White DE, Airiau CY, Sterbenz JT, York BD, Clancy DJ, Dai Q (2015) Real-time process analytical technology assurance for flow synthesis of oligonucleotides. Org Process Res Dev 19:203–214. For selected examples, see this reference

    Article  CAS  Google Scholar 

  94. Moore JS, Jensen KF (2014) “Batch” kinetics in flow: online IR analysis and continuous control. Angew Chem Int Ed 53:470–473. For selected examples, see this reference

    Article  CAS  Google Scholar 

  95. Moore JS, Jensen KF (2012) Automated multitrajectory method for reaction optimization in a microfluidic system using online IR analysis. Org Process Res Dev 16:1409–1415. For selected examples, see this reference

    Article  CAS  Google Scholar 

  96. Brodmann T, Koos P, Metzger A, Knochel P, Ley SV (2012) Continuous preparation of arylmagnesium reagents in flow with inline IR monitoring. Org Process Res Dev 16:1102–1113. For selected examples, see this reference

    Article  CAS  Google Scholar 

  97. Carter CF, Lange H, Ley SV, Baxendale IR, Wittkamp B, Goode JG, Gaunt NL (2010) ReactIR flow cell: a new analytical tool for continuous flow chemical processing. Org Process Res Dev 14:393–404. For selected examples, see this reference

    Article  CAS  Google Scholar 

  98. Benito-Lopez F, Verboom W, Kakuta M, Gardeniers JGE, Egberink RJM, Oosterbroek ER, van Den Berg A, Reinhoudt DN (2005) Optical fiber-based on-line UV/Vis spectroscopic monitoring of chemical reaction kinetics under high pressure in a capillary microreactor. Chem Commun:2857–2859

    Google Scholar 

  99. Lu H, Schmidt MA, Jensen KF (2001) Photochemical reactions and on-line UV detection in microfabricated reactors. Lab Chip 1:22–28

    Article  CAS  PubMed  Google Scholar 

  100. Gökay O, Albert K (2012) From single to multiple microcoil flow probe NMR and related capillary techniques: a review. Anal Bioanal Chem 402:647–669

    Article  PubMed  Google Scholar 

  101. Bart J, Kolkman AJ, Oosthoek-de Vries AJ, Koch K, Nieuwland PJ, Janssen JWG, van Bentum PJM, Ampt KAM, Rutjes FPJT, Wijmenga SS, Gardeniers JGE, Kentgens APM (2009) A microfluidic high-resolution NMR flow probe. J Am Chem Soc 131:5014–5015

    Article  CAS  PubMed  Google Scholar 

  102. Hamlin TA, Leadbeater NE (2013) Raman spectroscopy as a tool for monitoring mesoscale continuous-flow organic synthesis: equipment interface and assessment in four medicinally-relevant reactions. Beilstein J Org Chem 9:1843–1852

    Article  PubMed  PubMed Central  Google Scholar 

  103. Chaplain G, Haswell SJ, Fletcher PDI, Kelly SM, Mansfield A (2013) Development and evaluation of a Raman flow cell for monitoring continuous flow reactions. Aust J Chem 66:208–212

    Article  CAS  Google Scholar 

  104. Mozharov S, Nordon A, Littlejohn D, Wiles C, Watts P, Dallin P, Girkin JM (2011) Improved method for kinetic studies in microreactors using flow manipulation and noninvasive Raman spectrometry. J Am Chem Soc 133:3601–3608

    Article  CAS  PubMed  Google Scholar 

  105. Rinke G, Ewinger A, Kerschbaum S, Rinke M (2011) In situ Raman spectroscopy to monitor the hydrolysis of acetal in microreactors. Microfluid Nanofluid 10:145–143

    Article  CAS  Google Scholar 

  106. Bristow TWT, Ray AD, O’Kearney-McMullan A, Lim L, McCullough B, Zammataro A (2014) On-line monitoring of continuous flow chemical synthesis using a portable, small footprint mass spectrometer. J Am Soc Mass Spectrom 2014(25):1794–1802

    Article  Google Scholar 

  107. Hamilton SE, Mattrey F, Bu X, Murray D, McCullough B, Welch CJ (2014) Use of a miniature mass spectrometer to support pharmaceutical process chemistry. Org Process Res Dev 18:103–108

    Article  CAS  Google Scholar 

  108. Browne DL, Wright S, Deadman BJ, Dunnage S, Baxendale IR, Turner RM, Ley SV (2012) Continuous flow reaction monitoring using an on-line miniature mass spectrometer. Rapid Commun Mass Spectrom 26:1999–2010

    Article  CAS  PubMed  Google Scholar 

  109. Koster S, Verpoorte E (2007) A decade of microfluidic analysis coupled with electrospray mass spectrometry: an overview. Lab Chip 7:1394–1412

    Article  CAS  PubMed  Google Scholar 

  110. Brzozowski M, O’Brien M, Ley SV, Polyzos A (2015) Flow chemistry: intelligent processing of gas−liquid transformations using a tube-in-tube reactor. Acc Chem Res 48:349–362. For a review, see this reference

    Article  CAS  PubMed  Google Scholar 

  111. O’Brien M, Baxendale IR, Ley SV (2010) Flow ozonolysis using a semipermeable Teflon AF-2400 membrane to effect gas/liquid contact. Org Lett 12:1596–1598

    Article  PubMed  Google Scholar 

  112. Polyzos A, O’Brien M, Petersen TP, Baxendale IR, Ley SV (2011) The continuous-flow synthesis of carboxylic acids using CO2 in a tube-in-tube gas permeable membrane reactor. Angew Chem Int Ed 50:1190–1193

    Article  CAS  Google Scholar 

  113. Bourne SL, Koos P, O’Brien M, Martin B, Schenkel B, Baxendale IR, Ley SV (2011) The continuous flow synthesis of styrenes using ethylene in a palladium-catalysed heck cross-coupling reaction. Synlett:2643–2647

    Google Scholar 

  114. Brzozowski M, Forni JA, Savage GP, Polyzos A (2015) The direct α-C(sp3)-H functionalisation of N-aryl tetrahydroisoquinolines via an iron-catalysed aerobic nitro-Mannich reaction and continuous flow processing. Chem Commun 51:334–337

    Article  CAS  Google Scholar 

  115. Bourne SL, Ley SV (2013) A continuous flow solution to achieving efficient aerobic anti-markovnikov wacker oxidation. Adv Synth Catal 355:1905–1910

    Article  CAS  Google Scholar 

  116. Newton S, Ley SV, Casas Arce E, Grainger DM (2012) Asymmetric homogeneous hydrogenation in flow using a tube-in-tube reactor. Adv Synth Catal 354:1805–1812

    Article  CAS  Google Scholar 

  117. O’Brien M, Taylor N, Polyzos A, Baxendale IR, Ley SV (2011) Hydrogenation in flow: homogeneous and heterogeneous catalysis using Teflon AF-2400 to effect gas-liquid contact at elevated pressure. Chem Sci 2:1250–1257

    Article  Google Scholar 

  118. Skowerski K, Czarnocki SJ, Knapkiewicz P (2014) Tube-in-tube reactor as a useful tool for homo- and heterogeneous olefin metathesis under continuous flow mode. ChemSusChem 7:536–542

    Article  CAS  PubMed  Google Scholar 

  119. Mastronardi F, Gutmann B, Kappe CO (2013) Continuous flow generation and reactions of anhydrous diazomethane using a Teflon AF-2400 tube-in-tube reactor. Org Lett 15:5590–5593

    Article  CAS  PubMed  Google Scholar 

  120. Mercadante MA, Leadbeater NE (2012) Development of methodologies for reactions involving gases as reagents: microwave heating and conventionally-heated continuous-flow processing as examples. Green Proc Synth 1:499–507. For a review, see this reference

    CAS  Google Scholar 

  121. Mercadante MA, Kelly CB, Lee C, Leadbeater NE (2012) Continuous flow hydrogenation using an on-demand gas delivery reactor. Org Process Res Dev 16:1064–1068

    Article  CAS  Google Scholar 

  122. Mercadante MA, Leadbeater NE (2011) Continuous-flow, palladium-catalysed alkoxycarbonylation reactions using a prototype reactor in which it is possible to load gas and heat simultaneously. Org Biomol Chem 9:6575–6578

    Article  CAS  PubMed  Google Scholar 

  123. Rudzinski DM, Leadbeater NE (2013) Microwave heating and conventionally-heated continuous-flow processing as tools for performing cleaner palladium-catalyzed decarboxylative couplings using oxygen as the oxidant—a proof of principle study. Green Proc Synth 2:323–328

    CAS  Google Scholar 

  124. Ciamician G (1912) The photochemistry of the future. Science 36:385–394

    Article  CAS  PubMed  Google Scholar 

  125. Gilmore K, Seeberger PH (2014) Continuous flow photochemistry. Chem Rec 14:410–418. For reviews, see this reference

    Article  CAS  PubMed  Google Scholar 

  126. Schuster EM, Wipf P (2014) Photochemical flow reactions. Isr J Chem 54:361–370. For reviews, see this reference

    Article  CAS  Google Scholar 

  127. Knowles JP, Elliott LD, Booker-Milburn KI (2012) Flow photochemistry: old light through new windows. Beilstein J Org Chem 8:2025–2052. For reviews, see this reference

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hook BDA, Dohle W, Hirst PR, Pickworth M, Berry MB, Booker-Milburn KI (2005) A practical flow reactor for continuous organic photochemistry. J Org Chem 70:7558–7564

    Article  CAS  PubMed  Google Scholar 

  129. Foraboschi FP (1959) Conversion in a photochemical flow reactor. Chim Ind 41:731–737. Some work had preceded this. See this reference, for example

    CAS  Google Scholar 

  130. Kopetzki D, Lévesque F, Seeberger PH (2013) A continuous-flow process for the synthesis of artemisinin. Chem Eur J 19:5450–5456

    Article  CAS  PubMed  Google Scholar 

  131. Lévesque F, Seeberger PH (2012) Continuous-flow synthesis of the anti-malaria drug artemisinin. Angew Chem Int Ed 51:1706–1709

    Article  Google Scholar 

  132. Amara Z, Bellamy JFB, Horvath R, Miller SJ, Beeby A, Burgard A, Rossen K, Poliakoff M, George MW (2015) Applying green chemistry to the photochemical route to artemisinin. Nat Chem 7:489–495

    Article  CAS  PubMed  Google Scholar 

  133. Garlets ZJ, Nguyen JD, Stephenson CRJ (2014) The development of visible-light photoredox catalysis in flow. Isr J Chem 54:351–360. For a review, see this reference

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Prier CK, Rankic DA, MacMillan DWC (2013) Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem Rev 113:5322–5363. For a review, see this reference

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Xuan J, Xiao W-J (2012) Visible-light photoredox catalysis. Angew Chem Int Ed 51:6828–6838. Narayanam MR, Stephenson CRJ (2011) Visible light photoredox catalysis: applications in organic synthesis. Chem Soc Rev 40:102–113

    Article  CAS  Google Scholar 

  136. Bou-Hamdan FR, Seeberger PH (2012) Visible-light-mediated photochemistry: accelerating Ru(bpy)32+-catalyzed reactions in continuous flow. Chem Sci 3:1612–1616

    Article  CAS  Google Scholar 

  137. Watts K, Baker A, Wirth T (2015) Electrochemical Synthesis in Microreactors. J Flow Chem 4:2–11. For reviews, see this reference

    Article  Google Scholar 

  138. Schuelein J, Löwe H (2014) Electrochemistry in flow. In: Darvas F, Dormán G, Hessel V (eds) Flow chemistry: volume 1. DeGruyter. For reviews, see this reference

    Google Scholar 

  139. Waldvogel SR, Janza B (2014) Renaissance of electrosynthetic methods for the construction of complex molecules. Angew Chem Int Ed 53:7122–7123. For perspectives, see this reference

    Article  CAS  Google Scholar 

  140. Frontana-Uribe BA, Little RD, Ibanez JG, Palmad A, Vasquez-Medrano R (2010) Organic electrosynthesis: a promising green methodology in organic chemistry. Green Chem 12:2099–2119

    Article  CAS  Google Scholar 

  141. Frey DA, Wu N, Moeller KD (1996) Anodic electrochemistry and the use of a 6-volt lantern battery: a simple method for attempting electrochemically based synthetic transformations. Tetrahedron Lett 37:8317–8320

    Article  CAS  Google Scholar 

  142. Watts K, Gattrell W, Wirth T (2011) A practical microreactor for electrochemistry in flow. Beilstein J Org Chem 7:1108–1114. For designs, see this reference

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kuleshova J, Hill-Cousins JT, Birkin PR, Brown RCD, Pletcher D, Underwood TJ (2011) A simple and inexpensive microfluidic electrolysis cell. Electrochim Acta 56:4322–4326

    Article  CAS  Google Scholar 

  144. Ziogas A, Kolb G, O’Connell M, Attour A, Lapicque F, Matlosz M, Rode S (2009) Electrochemical microstructured reactors: design and application in organic synthesis. J Appl Electrochem 39:2297–2313

    Article  CAS  Google Scholar 

  145. Küpper M, Hessel V, Löwe H, Stark W, Kinkel J, Michel M, Schmidt-Traub H (2003) Micro reactor for electroorganic synthesis in the simulated moving bed-reaction and separation environment. Electrochim Acta 48:2889–2896

    Article  Google Scholar 

  146. Arai K, Watts K, Wirth T (2014) Difluoro- and trifluoromethylation of electron-deficient alkenes in an electrochemical microreactor. ChemistryOpen 3:23–28

    Article  CAS  PubMed  Google Scholar 

  147. Arai K, Wirth T (2014) Rapid electrochemical deprotection of the isonicotinyloxycarbonyl group from carbonates and thiocarbonates in a microfluidic reactor. Org Process Res Dev 18:1377–1381

    Article  CAS  Google Scholar 

  148. Kabeshov MA, Musio B, Murray PRD, Browne DL, Ley SV (2014) Expedient preparation of nazlinine and a small library of indole alkaloids using flow electrochemistry as an enabling technology. Org Lett 16:4618–4621

    Article  CAS  PubMed  Google Scholar 

  149. Roth GP, Stalder R, Long T, Sauer D, Djuric S (2013) Continuous-flow microfluidic electrochemical synthesis: investigating a new tool for oxidative chemistry. J Flow Chem 3:34–40

    Article  CAS  Google Scholar 

  150. Stadler R, Roth GP (2013) Preparative microfluidic electrosynthesis of drug metabolites. ACS Med Chem Lett 4:1119–1123

    Article  Google Scholar 

  151. Hill-Cousins JT, Kuleshova J, Green RA, Birkin PR, Pletcher D, Underwood TJ, Leach SG, Brown RCD (2012) TEMPO-mediated electrooxidation of primary and secondary alcohols in a microfluidic electrolytic cell. ChemSusChem 5:326–331

    Article  CAS  PubMed  Google Scholar 

  152. Yoshida J-i (2005) Flash chemistry using electrochemical method and microsystems. Chem Commun:4509–4516

    Google Scholar 

  153. Nagaki A, Togai M, Suga S, Aoki N, Mae K, Yoshida J-i (2003) Control of extremely fast competitive consecutive reactions using micromixing. Selective Friedel−Crafts aminoalkylation. J Am Chem Soc 127:11666–11675

    Article  Google Scholar 

  154. Dalko PI (2013) Comprehensive enantioselective organocatalysis: catalysts, reactions, and applications. Wiley-VCH

    Book  Google Scholar 

  155. Atodiresei I, Vila C, Rueping M (2015) Asymmetric organocatalysis in continuous flow: opportunities for impacting industrial catalysis. ACS Catal 5:1972–1985. For general reviews, see this reference

    Article  CAS  Google Scholar 

  156. Finelli FG, Miranda LSM, de Souza ROMA (2015) Expanding the toolbox of asymmetric organocatalysis by continuous-flow process. Chem Commun 51:3708–3722

    Article  CAS  Google Scholar 

  157. Odedra A, Seeberger PH (2009) 5-(Pyrrolidin-2-yl)tetrazole-catalyzed aldol and Mannich reactions: acceleration and lower catalyst loading in a continuous-flow reactor. Angew Chem Int Ed 48:2699–2702

    Article  CAS  Google Scholar 

  158. Valera FE, Quaranta M, Moran A, Blacker J, Armstrong A, Cabral JT, Blackmond DG (2010) The flow’s the thing…or is it? Assessing the merits of homogeneous reactions in flask and flow. Angew Chem Int Ed 49:2478–2485

    Article  CAS  Google Scholar 

  159. Liao H-H, Hsiao C-C, Sugiono E, Rueping M (2013) Shedding light on Brønsted acid catalysis—a photocyclization-reduction reaction for the asymmetric synthesis of tetrahydroquinolines from aminochalcones in batch and flow. Chem Commun 49:7953–7955

    Article  CAS  Google Scholar 

  160. Sugiono E, Rueping M (2013) A combined continuous microflow photochemistry and asymmetric organocatalysis approach for the enantioselective synthesis of tetrahydroquinolines. Beilstein J Org Chem 9:2457–2462

    Article  PubMed  PubMed Central  Google Scholar 

  161. Neumann M, Zeitler K (2012) Application of microflow conditions to visible light photoredox catalysis. Org Lett 14:2658–2661

    Article  CAS  PubMed  Google Scholar 

  162. Rodríguez-Escrich C, Pericàs MA (2015) Organocatalysis on tap: enantioselective continuous flow processes mediated by solid-supported chiral organocatalysts. Eur J Org Chem:1173–1188

    Google Scholar 

  163. Ötvös SB, Mándity IM, Fülöp F (2012) Asymmetric aldol reaction in a continuous-flow reactor catalyzed by a highly reusable heterogeneous peptide. J Catal 295:179–185

    Article  Google Scholar 

  164. Lange H, Carter CF, Hopkin MD, Burke A, Goode JG, Baxendale IR, Ley SV (2011) A breakthrough method for the accurate addition of reagents in multi-step segmented flow processing. Chem Sci 2:765–769

    Article  CAS  Google Scholar 

  165. Koos P, Gross U, Polyzos A, O’Brien M, Baxendale IR, Ley SV (2011) Teflon AF-2400 mediated gas-liquid contact in continuous flow methoxycarbonylations and in-line FTIR measurement of CO concentration. Org Biomol Chem 9:6903–6908

    Article  CAS  PubMed  Google Scholar 

  166. Ley SV, Fitzpatrick DE, Ingham RJ, Myers RM (2015) Organic synthesis: march of the machines. Angew Chem Int Ed 54:3449–3464. For reviews, see this reference

    Article  CAS  Google Scholar 

  167. Fabry DC, Sugiono E, Rueping M (2014) Self-optimizing reactor systems: algorithms, on-line analytics, setups, and strategies for accelerating continuous flow process optimization. Isr J Chem 54:341–350

    Article  CAS  Google Scholar 

  168. Sans V, Porwol L, Dragone V, Cronin L (2015) A self optimizing synthetic organic reactor system using real-time in-line NMR spectroscopy. Chem Sci 6:1258–1264. For examples, see this reference

    Article  CAS  PubMed  Google Scholar 

  169. Skilton RA, Parrott AJ, George MW, Poliakoff M, Bourne RA (2013) Real-time feedback control using online attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy for continuous flow optimization and process knowledge. Appl Spectrosc 67:1127–1131

    Article  CAS  PubMed  Google Scholar 

  170. Parrott AJ, Bourne RA, Akien GR, Irvine DJ, Poliakoff M (2011) Self-optimizing continuous reactions in supercritical carbon dioxide. Angew Chem Int Ed 50:3788–3792

    Article  CAS  Google Scholar 

  171. McMullen JP, Jensen KF (2011) Rapid determination of reaction kinetics with an automated microfluidic system. Org Process Res Dev 15:398–407

    Article  CAS  Google Scholar 

  172. Ingham RJ, Battilocchio C, Fitzpatrick DE, Sliwinski S, Hawkins JM, Ley SV (2015) A systems approach towards an intelligent and self-controlling platform for integrated continuous reaction sequences. Angew Chem Int Ed 54:144–148. For examples, see this reference

    Article  CAS  Google Scholar 

  173. Guetzoyan L, Ingham RJ, Nikbin N, Rossignol J, Wolling M, Baumert M, Burgess-Brown NA, Strain-Damerell CM, Shrestha L, Brennan PE, Fedorov O, Knapp S, Ley SV (2014) Machine-assisted synthesis of modulators of the histone reader BRD9 using flow methods of chemistry and frontal affinity chromatography. MedChemComm 5:540–546. For examples, see this reference

    Article  CAS  Google Scholar 

  174. Ingham RJ, Battilocchio C, Hawkins JM, Ley SV (2014) Integration of enabling methods for the automated flow preparation of piperazine-2-carboxamide. Beilstein J Org Chem 10:641–652

    Article  PubMed  PubMed Central  Google Scholar 

  175. Skilton RA, Bourne RA, Amara Z, Horvath R, Jin J, Scully MJ, Streng E, SLY T, Summers PA, Wang J, Perez E, Asfaw N, GLP A, Dupont J, Comak G, George MW, Poliakoff M (2015) Remote-controlled experiments with cloud chemistry. Nat Chem 7:1–5. For commentaries, see this reference

    Article  CAS  PubMed  Google Scholar 

  176. Peplow M (2014) Organic synthesis: the robo-chemist. Nature 512:20–22

    Article  CAS  PubMed  Google Scholar 

  177. www.futurechemistry.com. (accessed September 14th, 2021)

    Google Scholar 

  178. Flow chemistry course. https://futurechemistry.com/flow-chemistry-education/. Accessed September 14, 2021

  179. König B, Kreitmeier P, Hilgers P, Wirth T (2013) Flow chemistry in undergraduate organic chemistry education. J Chem Educ 90:934–936

    Article  Google Scholar 

  180. Feng ZV, Edelman KR, Swanson BP (2015) Student-fabricated microfluidic devices as flow reactors for organic and inorganic synthesis. J Chem Educ 92:723–727

    Article  CAS  Google Scholar 

  181. Vapourtec E-series. http://vapourtec.co.uk/products/eseriessystem). Accessed 30 May 2015

  182. Flow chemistry guide. http://vapourtec.co.uk/news/FlowChemistryGuide. Accessed 30 May 2015

  183. Thayer AM (2005) Harnessing Microreactions. Chem Eng News 83(22):43–52

    Article  Google Scholar 

  184. Grongsaard P, Bulger PG, Wallace DJ, Tan L, Chen Q, Dolman SJ, Nyrop J, Hoerrner RS, Weisel M, Arredondo J, Itoh T, Xie C, Wen X, Zhao D, Muzzio DJ, Bassan EM, Shultz CS (2012) Convergent, kilogram scale synthesis of an Akt kinase Inhibitor. Org Process Res Dev 16:1069–1081

    Article  CAS  Google Scholar 

  185. Braune S, Pöchlauer P, Reintjens R, Steinhofer S, Winter M, Lobet O, Guidat R, Woehl P, Guermeur C (2009) Industry perspective—selective nitration in a microreactor for pharmaceutical production under cGMP conditions. Chem Today 27:26–29

    CAS  Google Scholar 

  186. Hernandez-Linares MG, Guerrero-Luna G, Perez-Estrada S, Ellison M, Ortin M-M, Garcia-Garibay MA (2015) Large-scale green chemical synthesis of adjacent quaternary chiral centers by continuous flow photodecarbonylation of aqueous suspensions of nanocrystalline ketones. J Am Chem Soc 137:1679–1684

    Article  CAS  PubMed  Google Scholar 

  187. O’Brien AG, Horváth Z, Lévesque F, Lee JW, Seidel-Morgenstern A, Seeberger PH (2012) Continuous synthesis and purification by direct coupling of a flow reactor with simulated moving-bed chromatography. Angew Chem Int Ed 51:7028–7030

    Article  Google Scholar 

  188. Mascia S, Heider PL, Zhang H, Lakerveld R, Benyahia B, Barton PI, Braatz RD, Cooney CL, Evans JMB, Jamison TF, Jensen KF, Myerson AS, Trout BL (2013) End-to-end continuous manufacturing of pharmaceuticals: integrated synthesis, purification, and final dosage formation. Angew Chem Int Ed 52:12359–12363

    Article  CAS  Google Scholar 

  189. Heider PL, Born SC, Basak S, Benyahia B, Lakerveld R, Zhang H, Hogan R, Buchbinder L, Wolfe A, Mascia S, Evans JMB, Jamison TF, Jensen KF (2014) Development of a multi-step synthesis and workup sequence for an integrated, continuous manufacturing process of a pharmaceutical. Org Process Res Dev 18:402–409

    Article  CAS  Google Scholar 

  190. Lakerveld R, Benyahia B, Heider PL, Zhang H, Wolfe A, Testa CJ, Ogden S, Hersey DR, Mascia S, Evans JMB, Braatz RD, Barton PI (2014) The application of an automated control strategy for an integrated continuous pharmaceutical pilot plant. Org Process Res Dev. https://doi.org/10.1021/op500104d

  191. Hessel V, Wang Q, Kralisch D (2014) From green chemistry principles in flow chemistry towards green flow process design in the holistic viewpoint. In: Darvas F, Dormán G, Hessel V (eds) Flow chemistry: volume 1. DeGruyter. For a review, see this reference

    Google Scholar 

  192. Wang Q, Gürsel IV, Shang M, Hessel V (2013) Life cycle assessment for the direct synthesis of adipic acid in microreactors and benchmarking to the commercial process. Chem Eng J 234:300–311. For examples, see this reference

    Article  CAS  Google Scholar 

  193. Van der Vorst G, Aelterman W, De Witte B, Heirman B, Van Langenhove H, Dewulf J (2013) Reduced resource consumption through three generations of Galantamine·HBr synthesis. Green Chem 15:744–748

    Article  Google Scholar 

  194. Kralisch D, Streckmann I, Ott D, Krtschil U, Santacesaria E, Di Serio M, Russo V, De Carlo L, Linhart W, Christian E, Cortese B, de MHJM C, Hessel V (2012) Transfer of the epoxidation of soybean oil from batch to flow chemistry guided by cost and environmental issues. ChemSusChem 5:300–311

    Article  CAS  PubMed  Google Scholar 

  195. Kralisch D, Kreisel G (2007) Assessment of the ecological potential of microreaction technology. Chem Eng Sci 62:1094–1100

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The students in our laboratory involved in flow chemistry projects are thanked for their hard work and dedication. Our efforts have been funded by the National Science Foundation (CAREER Award CHE-0847262) and the University of Connecticut. We also thank Vapourtec Ltd. for equipment support as well as input on a number of projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas E. Leadbeater .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Leadbeater, N.E. (2022). Flow Chemistry as an Enabling Technology for Synthetic Organic Chemistry. In: Richardson, P.F. (eds) Green Chemistry in Drug Discovery. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1579-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1579-9_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1577-5

  • Online ISBN: 978-1-0716-1579-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics