Skip to main content

Performing Meta-analyses with Very Few Studies

  • Protocol
  • First Online:
Meta-Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2345))

Abstract

This chapter contains a methodological framework for choosing a model for the meta-analysis of very few studies and selecting an estimation method for the chosen model by means of study characteristics and by comparing results yielded by different approaches. When the results are inconclusive between different estimation methods, it might be the best solution to refrain from a quantitative meta-analysis but to summarize the study results by means of a qualitative evidence synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2009) Introduction to meta-analysis. Wiley, Chichester

    Book  Google Scholar 

  2. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2010) A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods 1(2):97–111. https://doi.org/10.1002/jrsm.12

    Article  PubMed  Google Scholar 

  3. DerSimonian R, Laird NM (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188

    Article  CAS  PubMed  Google Scholar 

  4. Bender R, Friede T, Koch A, Kuss O, Schlattmann P, Schwarzer G, Skipka G (2018) Methods for evidence synthesis in the case of very few studies. Res Synth Methods 9(3):382–392. https://doi.org/10.1002/jrsm.1297

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cornell JE, Mulrow CD, Localio R, Stack CB, Meibohm AR, Guallar E, Goodman SN (2014) Random-effects meta-analysis of inconsistent effects: a time for change. Ann Intern Med 160(4):267–270

    Article  PubMed  Google Scholar 

  6. Novianti PW, Roes KC, van der Tweel I (2014) Estimation of between-trial variance in sequential meta-analyses: a simulation study. Contemp Clin Trials 37(1):129–138. https://doi.org/10.1016/j.cct.2013.11.012

    Article  PubMed  Google Scholar 

  7. Paule RC, Mandel J (1982) Consensus values and weighting factors. J Res Natl Bureau Standards 87(5):377–385. https://doi.org/10.6028/Jres.087.022

    Article  Google Scholar 

  8. Veroniki AA, Jackson D, Viechtbauer W, Bender R, Bowden J, Knapp G, Kuss O, Higgins JP, Langan D, Salanti G (2016) Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res Synth Methods 7(1):55–79. https://doi.org/10.1002/jrsm.1164

    Article  PubMed  Google Scholar 

  9. Hartung J (1999) An alternative method for meta-analysis. Biom J 41(8):901–916. https://doi.org/10.1002/(Sici)1521-4036(199912)41:8<901::Aid-Bimj901>3.0.Co;2-W

    Article  Google Scholar 

  10. Knapp G, Hartung J (2003) Improved tests for a random effects meta-regression with a single covariate. Stat Med 22(17):2693–2710. https://doi.org/10.1002/sim.1482

    Article  PubMed  Google Scholar 

  11. Sidik K, Jonkman JN (2002) A simple confidence interval for meta-analysis. Stat Med 21(21):3153–3159. https://doi.org/10.1002/sim.1262

    Article  PubMed  Google Scholar 

  12. Sidik K, Jonkman JN (2003) On constructing confidence intervals for a standardized mean difference in meta-analysis. Commun Stat Simulation Comput 32(4):1191–1203. https://doi.org/10.1081/Sac-120023885

    Article  Google Scholar 

  13. Veroniki AA, Jackson D, Viechtbauer W, Bender R, Knapp G, Kuss O, Langan D (2015) Recommendations for quantifying the uncertainty in the summary intervention effect and estimating the between-study heterogeneity variance in random-effectsmeta-analysis. Cochrane Database Syst Rev (1):1–72

    Google Scholar 

  14. Jackson D, Law M, Rucker G, Schwarzer G (2017) The Hartung-Knapp modification for random-effects meta-analysis: a useful refinement but are there any residual concerns? Stat Med 36(25):3923–3934. https://doi.org/10.1002/sim.7411

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mathes T, Kuss O (2018) A comparison of methods for meta-analysis of a small number of studies with binary outcomes. Res Synth Methods 9(3):366–381. https://doi.org/10.1002/jrsm.1296

    Article  PubMed  Google Scholar 

  16. Simmonds MC, Higgins JPT, Stewart LA, Tierney JF, Clarke MJ, Thompson SG (2005) Meta-analysis of individual patient data from randomized trials: a review of methods used in practice. Clin Trials 2(3):209–217. https://doi.org/10.1191/1740774505cn087oa

    Article  PubMed  Google Scholar 

  17. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22(4):719–748. https://doi.org/10.1093/jnci/22.4.719

    Article  CAS  PubMed  Google Scholar 

  18. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (2019) Cochrane handbook for systematic reviews of interventions, 2nd edn. Wiley-Blackwell, Hoboken

    Book  Google Scholar 

  19. Wiksten A, Rucker G, Schwarzer G (2016) Hartung-Knapp method is not always conservative compared with fixed-effect meta-analysis. Stat Med 35(15):2503–2515. https://doi.org/10.1002/sim.6879

    Article  PubMed  Google Scholar 

  20. IQWiG (2020) General methods, version 6.0 of 5 November 2020. Institute for Quality and Efficiency in Health Care. https://www.iqwig.de/methoden/general-methods_version-6-0.pdf. Accessed 23 Apr 2020

  21. Guddat C, Grouven U, Bender R, Skipka G (2012) A note on the graphical presentation of prediction intervals in random-effects meta-analyses. Syst Rev 1:34. https://doi.org/10.1186/2046-4053-1-34

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lefebvre C, Glanville J, Briscoe S, Littlewood A, Marshall C, Metzendorf M, Noel-Storr A, Rader T (2019) Searching for and selecting studies. In: JPT H, Thomas J, Chandler J et al (eds) Cochrane Handbook for systematic reviews of interventions. Wiley-Blackwell, Hoboken, pp 67–107

    Chapter  Google Scholar 

  23. Higgins JPT, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558. https://doi.org/10.1002/sim.1186

    Article  PubMed  Google Scholar 

  24. Sutton AJ, Abrams KR, Jones DR, Sheldon TA, Song F (2000) Methods for meta-analysis in medical research. Wiley series in probability and mathematical statistics. Wiley, New York

    Google Scholar 

  25. Riley RD, Lambert PC, Abo-Zaid G (2010) Meta-analysis of individual participant data: rationale, conduct, and reporting. BMJ 340(7745):c221

    Article  PubMed  Google Scholar 

  26. Riley RD, Lambert PC, Staessen JA, Wang J, Gueyffier F, Thijs L, Boutitie F (2008) Meta-analysis of continuous outcomes combining individual patient data and aggregate data. Stat Med 27(11):1870–1893

    Article  PubMed  Google Scholar 

  27. Stijnen T, Hamza TH, Özdemir P (2010) Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data. Stat Med 29(29):3046–3067. https://doi.org/10.1002/sim.4040

    Article  PubMed  Google Scholar 

  28. Simmonds MC, Higgins JP (2016) A general framework for the use of logistic regression models in meta-analysis. Stat Methods Med Res 25(6):2858–2877. https://doi.org/10.1177/0962280214534409

    Article  PubMed  Google Scholar 

  29. Kuss O (2015) Statistical methods for meta-analyses including information from studies without any events-add nothing to nothing and succeed nevertheless. Stat Med 34(7):1097–1116. https://doi.org/10.1002/sim.6383

    Article  CAS  PubMed  Google Scholar 

  30. Bakbergenuly I, Kulinskaya E (2018) Meta-analysis of binary outcomes via generalized linear mixed models: a simulation study. BMC Med Res Methodol 18(1):70. https://doi.org/10.1186/s12874-018-0531-9

    Article  PubMed  PubMed Central  Google Scholar 

  31. Friede T, Rover C, Wandel S, Neuenschwander B (2017) Meta-analysis of two studies in the presence of heterogeneity with applications in rare diseases. Biom J 59(4):658–671. https://doi.org/10.1002/bimj.201500236

    Article  PubMed  Google Scholar 

  32. Friede T, Röver C, Wandel S, Neuenschwander B (2017) Meta-analysis of few small studies in orphan diseases. Res Synth Methods 8(1):79–91. https://doi.org/10.1002/jrsm.1217

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anke Schulz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schulz, A., Schürmann, C., Skipka, G., Bender, R. (2022). Performing Meta-analyses with Very Few Studies. In: Evangelou, E., Veroniki, A.A. (eds) Meta-Research. Methods in Molecular Biology, vol 2345. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1566-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1566-9_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1565-2

  • Online ISBN: 978-1-0716-1566-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics