Skip to main content

Exercise Training Protocols to Improve Obesity, Glucose Homeostasis, and Subclinical Inflammation

  • Protocol
  • First Online:
Physical Exercise and Natural and Synthetic Products in Health and Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2343))

Abstract

The global pandemics of obesity and sedentarism are associated with poor quality of life and increased risks for development of inflammatory chronic diseases, including type 2 diabetes, cardiovascular diseases, and cancer. Physical activity is considered as an antidote to counteract the development of chronic sterile inflammatory diseases. Thus, we review the most promising exercise training protocols for promoting weight loss, improving glucose homeostasis, and reducing inflammation. We discuss the advantages and disadvantages of moderate-intensity continuous aerobic training, high-intensity aerobic training, and combined (aerobic + resistance) training. Our aim with this chapter is to provide evidence and guidance for choosing the most appropriate protocols of exercise training according to the goals of the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kohl HW 3rd, Craig CL, Lambert EV, Inoue S, Alkandari JR, Leetongin G et al (2012) The pandemic of physical inactivity: global action for public health. Lancet 380(9838):294–305

    Article  PubMed  Google Scholar 

  2. Bames J, Behrens TK, Benden ME, Biddle S, Bond D, Brassard P et al (2012) Letter to the editor: standardized use of the terms “sedentary” and “sedentary behaviours”. Appl Physiol Nutr Metab 37:540–542

    Article  Google Scholar 

  3. Hotamisligil GS (2017) Inflammation, metaflammation and immunometabolic disorders. Nature 542(7640):177–185

    Article  CAS  PubMed  Google Scholar 

  4. Pedersen BK (2009) The diseasome of physical inactivity--and the role of myokines in muscle--fat cross talk. J Physiol 587(Pt 23):5559–5568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pedersen BK, Saltin B (2015) Exercise as medicine–evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports 25:1–72

    Article  PubMed  Google Scholar 

  6. American College of Sports Medicine (2013) ACSM's health-related physical fitness assessment manual. Lippincott Williams & Wilkins, Philadelphia, PA, USA. ISBN-13: 978-1451115680

    Google Scholar 

  7. Williams CJ, Gurd BJ, Bonafiglia JT, Voisin S, Li Z, Harvey N et al (2019) A multi-center comparison of O2 peak trainability between interval training and moderate intensity continuous training. Front Physiol 10:19. https://doi.org/10.3389/fphys.2019.00019

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gibala MJ, Little JP (2020) Physiological basis of brief vigorous exercise to improve health. J Physiol 598(1):61–69

    Article  CAS  PubMed  Google Scholar 

  9. Panissa VL, Fukuda DH, Caldeira RS, Gerosa-Neto J, Lira FS, Zagatto AM et al (2018) Is oxygen uptake measurement enough to estimate energy expenditure during high-intensity intermittent exercise? Quantification of anaerobic contribution by different methods. Front Physiol 9:868. https://doi.org/10.3389/fphys.2018.00868

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gillen JB, Gibala MJ (2014) Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Appl Physiol Nutr Metab 39(3):409–412

    Article  PubMed  Google Scholar 

  11. Buchheit M, Laursen PB (2013) High-intensity interval training, solutions to the programming puzzle. Sports Med 43(10):927–954

    Article  PubMed  Google Scholar 

  12. WHO (2000) Obesity: preventing and managing the global epidemic report of a WHO consultation: WHO technical report series 894. World Health Organization. https://www.who.int/nutrition/publications/obesity/WHO_TRS_894/en/

  13. Shaw KA, Gennat HC, O'Rourke P, Del Mar C (2006) Exercise for overweight or obesity. Cochrane Database Syst Rev 4:CD003817. https://doi.org/10.1002/14651858.CD003817.pub3

    Article  Google Scholar 

  14. Hespanhol Junior LC, Pillay JD, van Mechelen W, Verhagen E (2015) Meta-analyses of the effects of habitual running on indices of health in physically inactive adults. Sports Med 45(10):1455–1468

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wewege M, Van Den Berg R, Ward R, Keech A (2017) The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: a systematic review and meta-analysis. Obes Rev 18(6):635–646

    Article  CAS  PubMed  Google Scholar 

  16. Kemmler W, Scharf M, Lell M, Petrasek C, Von Stengel S (2014) High versus moderate intensity running exercise to impact cardiometabolic risk factors: the randomized controlled RUSH-study. Biomed Res Int 2014:843095. https://doi.org/10.1155/2014/843095

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shepherd SO, Wilson OJ, Taylor AS, Thøgersen-Ntoumani C, Adlan AM, Wagenmakers AJ et al (2015) Low-volume high-intensity interval training in a gym setting improves cardio-metabolic and psychological health. PLoS One 10(9):e0139056. https://doi.org/10.1371/journal.pone.0139056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gerosa-Neto J, Panissa VLG, Monteiro PA, Inoue DS, Ribeiro JPJ, Figueiredo C et al (2019) High-or moderate-intensity training promotes change in cardiorespiratory fitness, but not visceral fat, in obese men: a randomised trial of equal energy expenditure exercise. Respir Physiol Neurobiol 266:150–155

    Article  PubMed  Google Scholar 

  19. Thum JS, Parsons G, Whittle T, Astorino TA (2017) High-intensity interval training elicits higher enjoyment than moderate intensity continuous exercise. PLoS One 12(1):e0166299. https://doi.org/10.1371/journal.pone.0166299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maillard F, Pereira B, Boisseau N (2018) Effect of high-intensity interval training on total, abdominal and visceral fat mass: a meta-analysis. Sports Med 48(2):269–288

    Article  PubMed  Google Scholar 

  21. Nikseresht M, Agha-Alinejad H, Azarbayjani MA, Ebrahim K (2014) Effects of nonlinear resistance and aerobic interval training on cytokines and insulin resistance in sedentary men who are obese. J Strengthe Cond Res 28(9):2560–2568

    Article  Google Scholar 

  22. Zhang H, Tong TK, Qiu W, Zhang X, Zhou S, Liu Y et al (2017) Comparable effects of high-intensity interval training and prolonged continuous exercise training on abdominal visceral fat reduction in obese young women. J Diabetes Res 2017:5071740. https://doi.org/10.1155/2017/5071740

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hallsworth K, Thoma C, Hollingsworth KG, Cassidy S, Anstee QM, Day CP et al (2015) Modified high-intensity interval training reduces liver fat and improves cardiac function in non-alcoholic fatty liver disease: a randomized controlled trial. Clin Sci (Lond) 129(12):1097–1105

    Article  CAS  Google Scholar 

  24. Jung ME, Bourne JE, Beauchamp MR, Robinson E, Little JP (2015) High-intensity interval training as an efficacious alternative to moderate-intensity continuous training for adults with prediabetes. J Diabetes Res 2015:191595. https://doi.org/10.1155/2015/191595

    Article  PubMed  PubMed Central  Google Scholar 

  25. Karstoft K, Safdar A, Little JP (2018) Optimizing exercise for the prevention and treatment of type 2 diabetes. Front Endocrinol (Lausanne) 9:237. https://doi.org/10.3389/fendo.2018.00237

    Article  Google Scholar 

  26. Masuki S, Morikawa M, Nose H (2019) High-intensity walking time is a key determinant to increase physical fitness and improve health outcomes after interval walking training in middle-aged and older people. Mayo Clin Proc 94(12):2415–2426. https://doi.org/10.1016/j.mayocp.2019.04.039

    Article  PubMed  Google Scholar 

  27. Nemoto K-i, Gen-no H, Masuki S, Okazaki K, Nose H (2007) Effects of high-intensity interval walking training on physical fitness and blood pressure in middle-aged and older people. Mayo Clin Proc 82(7):803–811

    Article  PubMed  Google Scholar 

  28. Keating S, Johnson N, Mielke G, Coombes J (2017) A systematic review and meta-analysis of interval training versus moderate-intensity continuous training on body adiposity. Obes Rev 18(8):943–964

    Article  CAS  PubMed  Google Scholar 

  29. International Diabetes Federation Guideline Development Group (2017) IDF Diabetes Atlas Eighth Edition. http://www.diabetesatlas.org/

  30. International Diabetes Federation (2014) Global guideline for type 2 diabetes. Diabetes Res Clin Pract 104:1–52

    Article  Google Scholar 

  31. Richter EA, Hargreaves M (2013) Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev 93(3):993–1017

    Article  CAS  PubMed  Google Scholar 

  32. Houmard JA, Tanner CJ, Slentz CA, Duscha BD, McCartney JS, Kraus WE (2004) Effect of the volume and intensity of exercise training on insulin sensitivity. J Appl Physiol 96(1):101–106

    Article  CAS  PubMed  Google Scholar 

  33. Conn VS, Koopman RJ, Ruppar TM, Phillips LJ, Mehr DR, Hafdahl AR (2014) Insulin sensitivity following exercise interventions: systematic review and meta-analysis of outcomes among healthy adults. J Prim Care Community Health 5(3):211–222

    Article  PubMed  Google Scholar 

  34. Kang J, Robertson RJ, Hagberg JM, Kelley DE, Goss FL, Dasilva SG et al (1996) Effect of exercise intensity on glucose and insulin metabolism in obese individuals and obese NIDDM patients. Diabetes Care 19(4):341–349

    Article  CAS  PubMed  Google Scholar 

  35. Pan B, Ge L, Xun YQ, Chen YJ, Gao CY, Han X et al (2018) Exercise training modalities in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. Int J Behav Nutr Phys Act 15(1):72. https://doi.org/10.1186/s12966-018-0703-3

    Article  PubMed  PubMed Central  Google Scholar 

  36. Grace A, Chan E, Giallauria F, Graham PL, Smart NA (2017) Clinical outcomes and glycaemic responses to different aerobic exercise training intensities in type II diabetes: a systematic review and meta-analysis. Cardiovasc Diabetol 16(1):37. https://doi.org/10.1186/s12933-017-0518-6

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kumar AS, Maiya AG, Shastry B, Vaishali K, Ravishankar N, Hazari A et al (2019) Exercise and insulin resistance in type 2 diabetes mellitus: a systematic review and meta-analysis. Ann Phys Rehabil Med 62(2):98–103

    Article  Google Scholar 

  38. Snowling NJ, Hopkins WG (2006) Effects of different modes of exercise training on glucose control and risk factors for complications in type 2 diabetic patients: a meta-analysis. Diabetes Care 29(11):2518–2527

    Article  PubMed  Google Scholar 

  39. Umpierre D, Ribeiro PA, Kramer CK, Leitao CB, Zucatti AT, Azevedo MJ et al (2011) Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA 305(17):1790–1799

    Article  CAS  PubMed  Google Scholar 

  40. Mann S, Beedie C, Balducci S, Zanuso S, Allgrove J, Bertiato F et al (2014) Changes in insulin sensitivity in response to different modalities of exercise: a review of the evidence. Diabetes Metab Res Rev 30(4):257–268

    Article  CAS  PubMed  Google Scholar 

  41. Boulé NG, Kenny GP, Haddad E, Wells GA, Sigal RJ (2003) Meta-analysis of the effect of structured exercise training on cardiorespiratory fitness in type 2 diabetes mellitus. Diabetologia 46(8):1071–1081

    Article  PubMed  Google Scholar 

  42. Mourier A, Gautier JF, De Kerviler E, Bigard AX, Villette JM, Garnier JP et al (1997) Mobilization of visceral adipose tissue related to the improvement in insulin sensitivity in response to physical training in NIDDM: effects of branched-chain amino acid supplements. Diabetes Care 20(3):385–391

    Article  CAS  PubMed  Google Scholar 

  43. Hansen D, Dendale P, Jonkers R, Beelen M, Manders R, Corluy L et al (2009) Continuous low-to moderate-intensity exercise training is as effective as moderate-to high-intensity exercise training at lowering blood HbA 1c in obese type 2 diabetes patients. Diabetologia 52(9):1789–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Choi KM, Han KA, Ahn HJ, Hwang SY, Hong HC, Choi HY et al (2012) Effects of exercise on sRAGE levels and cardiometabolic risk factors in patients with type 2 diabetes: a randomized controlled trial. J Clin Endocrinol Metab 97(10):3751–3758

    Article  CAS  PubMed  Google Scholar 

  45. Babraj JA, Vollaard NB, Keast C, Guppy FM, Cottrell G, Timmons JA (2009) Extremely short duration high intensity interval training substantially improves insulin action in young healthy males. BMC Endocr Disord 9:3. https://doi.org/10.1186/1472-6823-9-3

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gillen JB, Martin BJ, MacInnis MJ, Skelly LE, Tarnopolsky MA, Gibala MJ (2016) Twelve weeks of sprint interval training improves indices of cardiometabolic health similar to traditional endurance training despite a five-fold lower exercise volume and time commitment. PLoS One 11(4):e0154075. https://doi.org/10.1371/journal.pone.0154075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jelleyman C, Yates T, O'Donovan G, Gray LJ, King JA, Khunti K et al (2015) The effects of high-intensity interval training on glucose regulation and insulin resistance: a meta-analysis. Obes Rev 16(11):942–961

    Article  CAS  PubMed  Google Scholar 

  48. Liu JX, Zhu L, Li PJ, Li N, Xu YB (2019) Effectiveness of high-intensity interval training on glycemic control and cardiorespiratory fitness in patients with type 2 diabetes: a systematic review and meta-analysis. Aging Clin Exp Res 31(5):575–593

    Article  PubMed  Google Scholar 

  49. De Nardi AT, Tolves T, Lenzi TL, Signori LU, da Silva AMV (2018) High-intensity interval training versus continuous training on physiological and metabolic variables in prediabetes and type 2 diabetes: a meta-analysis. Diabetes Res Clin Pract 137:149–159

    Article  PubMed  CAS  Google Scholar 

  50. Kang D-W, Lee J, Suh S-H, Ligibel J, Courneya KS, Jeon JY (2017) Effects of exercise on insulin, IGF axis, adipocytokines, and inflammatory markers in breast cancer survivors: a systematic review and meta-analysis. Cancer Epidemiol Biomark Prev 26(3):355–365

    Article  CAS  Google Scholar 

  51. Pearson MJ, Mungovan S, Smart N (2018) Effect of aerobic and resistance training on inflammatory markers in heart failure patients: systematic review and meta-analysis. Heart Fail Rev 23(2):209–223

    Article  CAS  PubMed  Google Scholar 

  52. Hayashino Y, Jackson JL, Hirata T, Fukumori N, Nakamura F, Fukuhara S et al (2014) Effects of exercise on C-reactive protein, inflammatory cytokine and adipokine in patients with type 2 diabetes: a meta-analysis of randomized controlled trials. Metabolism 63(3):431–440

    Article  CAS  PubMed  Google Scholar 

  53. Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8(8):457–465

    Article  CAS  PubMed  Google Scholar 

  54. Ramos JS, Dalleck LC, Tjonna AE, Beetham KS, Coombes JS (2015) The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis. Sports Med 45(5):679–692

    Article  PubMed  Google Scholar 

  55. Zheng G, Qiu P, Xia R, Lin H, Ye B, Tao J et al (2019) Effect of aerobic exercise on inflammatory markers in healthy middle-aged and older adults: a systematic review and meta-analysis of randomized controlled trials. Front Aging Neurosci 11:98. https://doi.org/10.3389/fnagi.2019.00098

    Article  PubMed  PubMed Central  Google Scholar 

  56. Khalafi M, Symonds ME (2020) The impact of high-intensity interval training on inflammatory markers in metabolic disorders: A meta-analysis. Scand J Med Sci Sports 30(11):2020–2036. https://doi.org/10.1111/sms.13754. Online ahead of print

    Article  PubMed  Google Scholar 

  57. Batacan RB, Duncan MJ, Dalbo VJ, Tucker PS, Fenning AS (2017) Effects of high-intensity interval training on cardiometabolic health: a systematic review and meta-analysis of intervention studies. Br J Sports Med 51(6):494–503

    Article  PubMed  Google Scholar 

  58. Fedewa MV, Hathaway ED, Ward-Ritacco CL (2017) Effect of exercise training on C reactive protein: a systematic review and meta-analysis of randomised and non-randomised controlled trials. Br J Sports Med 51(8):670–676

    Article  PubMed  Google Scholar 

  59. Tartibian B, Maleki BH, Kanaley J, Sadeghi K (2011) Long-term aerobic exercise and omega-3 supplementation modulate osteoporosis through inflammatory mechanisms in post-menopausal women: a randomized, repeated measures study. Nutr Metab (Lond) 8:71. https://doi.org/10.1186/1743-7075-8-71

    Article  CAS  Google Scholar 

  60. Tartibian B, FitzGerald LZ, Azadpour N, Maleki BH (2015) A randomized controlled study examining the effect of exercise on inflammatory cytokine levels in post-menopausal women. Post Reprod Health 21(1):9–15

    Article  PubMed  Google Scholar 

  61. Steckling F, Farinha J, Santos D, Bresciani G, Mortari J, Stefanello S et al (2016) High intensity interval training reduces the levels of serum inflammatory cytokine on women with metabolic syndrome. Exp Clin Endocrinol Diabetes 124(10):597–601

    Article  CAS  PubMed  Google Scholar 

  62. Oh S, So R, Shida T, Matsuo T, Kim B, Akiyama K et al (2017) High-intensity aerobic exercise improves both hepatic fat content and stiffness in sedentary obese men with nonalcoholic fatty liver disease. Sci Rep 7:43029. https://doi.org/10.1038/srep43029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nunes PR, Martins FM, Souza AP, Carneiro MA, Orsatti CL, Michelin MA et al (2019) Effect of high-intensity interval training on body composition and inflammatory markers in obese postmenopausal women: a randomized controlled trial. Menopause 26(3):256–264

    Article  PubMed  Google Scholar 

  64. Vella CA, Taylor K, Drummer D (2017) High-intensity interval and moderate-intensity continuous training elicit similar enjoyment and adherence levels in overweight and obese adults. Eur J Sport Sci 17(9):1203–1211

    Article  PubMed  PubMed Central  Google Scholar 

  65. Gerosa-Neto J, Antunes BM, Campos EZ, Rodrigues J, Ferrari GD, Neto JCR et al (2016) Impact of long-term high-intensity interval and moderate-intensity continuous training on subclinical inflammation in overweight/obese adults. J Exerc Rehabil 12(6):575–580

    Article  PubMed  PubMed Central  Google Scholar 

  66. Stensvold D, Slørdahl SA, Wisløff U (2012) Effect of exercise training on inflammation status among people with metabolic syndrome. Metab Syndr Relat Disord 10(4):267–272

    Article  CAS  PubMed  Google Scholar 

  67. Allen NG, Higham SM, Mendham AE, Kastelein TE, Larsen PS, Duffield R (2017) The effect of high-intensity aerobic interval training on markers of systemic inflammation in sedentary populations. Eur J Appl Physiol 117(6):1249–1256

    Article  PubMed  Google Scholar 

  68. Robinson E, Durrer C, Simtchouk S, Jung ME, Bourne JE, Voth E et al (2015) Short-term high-intensity interval and moderate-intensity continuous training reduce leukocyte TLR4 in inactive adults at elevated risk of type 2 diabetes. J Appl Physiol 119(5):508–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gerosa-Neto J, Monteiro PA, Inoue DS, Antunes BM, Batatinha H, Dorneles GP et al (2020) High-and moderate-intensity training modify LPS-induced ex-vivo interleukin-10 production in obese men in response to an acute exercise bout. Cytokine 136:155249. https://doi.org/10.1016/j.cyto.2020.155249

    Article  CAS  PubMed  Google Scholar 

  70. Diniz TA, Rossi FE, Buonani C, Mota J, Forte Freitas-Junior I (2017) Ejercicio físico como tratamiento no farmacológico para la mejora de la salud posmenopausia. Rev Bras Med Esporte 23(4):322–327

    Article  Google Scholar 

  71. Rossi F, Diniz T, Neves L, Fortaleza A, Gerosa-Neto J, Inoue D et al (2017) The beneficial effects of aerobic and concurrent training on metabolic profile and body composition after detraining: a 1-year follow-up in postmenopausal women. Eur J Clin Nutr 71(5):638–645

    Article  CAS  PubMed  Google Scholar 

  72. Rossi FE, Buonani C, Viezel J, Gerosa-Neto J, Mota J, Fernandes R et al (2013) Effects of concurrent training on body composition and resting metabolic rate in postmenopausal women. RPCD 13(1):12–22. https://doi.org/10.1590/S1980-65742015000100008

    Article  Google Scholar 

  73. Rossi FE, Buonani C, Viezel J, EPd S, Diniz TA, dos Santos VR et al (2015) Effect of combined aerobic and resistance training in body composition of obese postmenopausal women. Motriz: Revista de Educação Física 21(1):61–67. https://doi.org/10.1590/S1980-65742015000100008

    Article  Google Scholar 

  74. Rossi FE, Diniz TA, Fortaleza AC, Neves LM, Picolo MR, Monteiro PA et al (2018) Concurrent training promoted sustained anti-atherogenic benefits in the fasting plasma triacylglycerolemia of postmenopausal women at 1-year follow-up. J Strength Cond Res 32(12):3564–3573

    Article  PubMed  Google Scholar 

  75. Rossi FE, Fortaleza AC, Neves LM, Buonani C, Picolo MR, Diniz TA et al (2015) Combined training (aerobic plus strength) potentiates a reduction in body fat but demonstrates no difference on the lipid profile in postmenopausal women when compared to aerobic training with a similar training load. J Strength Cond Res 30(1):226–234

    Article  Google Scholar 

  76. Buonani C, Rossi FE, Diniz TA, Fortaleza AC, Viezel J, Picolo MR et al (2019) Concurrent training and taurine improve lipid profile in postmenopausal women. Rev Bras Med Esporte 25(2):121–126

    Article  Google Scholar 

  77. Sillanpaa E, Laaksonen DE, Hakkinen A, Karavirta L, Jensen B, Kraemer WJ et al (2009) Body composition, fitness, and metabolic health during strength and endurance training and their combination in middle-aged and older women. Eur J Appl Physiol 106(2):285–296

    Article  PubMed  CAS  Google Scholar 

  78. Atashak S, Stannard SR, Azizbeigi K (2016) Cardiovascular risk factors adaptation to concurrent training in overweight sedentary middle-aged men. J Sports Med Phys Fitness 56(5):624–630

    PubMed  Google Scholar 

  79. Ostman C, Smart N, Morcos D, Duller A, Ridley W, Jewiss D (2017) The effect of exercise training on clinical outcomes in patients with the metabolic syndrome: a systematic review and meta-analysis. Cardiovasc Diabetol 16(1):110. https://doi.org/10.1186/s12933-017-0590-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Park SK, Park JH, Kwon YC, Kim HS, Yoon MS, Park HT (2003) The effect of combined aerobic and resistance exercise training on abdominal fat in obese middle-aged women. J Physiol Anthropol Appl Hum Sci 22(3):129–135

    Article  Google Scholar 

  81. Jin CH, Rhyu HS, Kim JY (2018) The effects of combined aerobic and resistance training on inflammatory markers in obese men. J Exerc Rehabil 14(4):660–665

    Article  PubMed  PubMed Central  Google Scholar 

  82. Santa-Clara H, Fernhall B, Baptista F, Mendes M, Sardinha LB (2003) Effect of a one-year combined exercise training program on body composition in men with coronary artery disease. Metabolism 52(11):1413–1417

    Article  CAS  PubMed  Google Scholar 

  83. Lee JS, Kim CG, Seo TB, Kim HG, Yoon SJ (2015) Effects of 8-week combined training on body composition, isokinetic strength, and cardiovascular disease risk factors in older women. Aging Clin Exp Res 27(2):179–186

    Article  PubMed  Google Scholar 

  84. Glowacki SP, Martin SE, Maurer A, Baek W, Green JS, Crouse SF (2004) Effects of resistance, endurance, and concurrent exercise on training outcomes in men. Med Sci Sports Exerc 36(12):2119–2127

    Article  PubMed  Google Scholar 

  85. Sargeant JA, Gray LJ, Bodicoat DH, Willis SA, Stensel DJ, Nimmo MA et al (2018) The effect of exercise training on intrahepatic triglyceride and hepatic insulin sensitivity: a systematic review and meta-analysis. Obes Rev 19(10):1446–1459

    Article  CAS  PubMed  Google Scholar 

  86. Balducci S, Leonetti F, Di Mario U, Fallucca F (2004) Is a long-term aerobic plus resistance training program feasible for and effective on metabolic profiles in type 2 diabetic patients? Diabetes Care 27(3):841–842

    Article  PubMed  Google Scholar 

  87. Tessier D, Ménard J, Fülöp T, Ardilouze JL, Roy MA, Dubuc N et al (2000) Effects of aerobic physical exercise in the elderly with type 2 diabetes mellitus. Arch Gerontol Geriatr 31(2):121–132

    Article  CAS  PubMed  Google Scholar 

  88. Lucotti P, Monti LD, Setola E, Galluccio E, Gatti R, Bosi E et al (2011) Aerobic and resistance training effects compared to aerobic training alone in obese type 2 diabetic patients on diet treatment. Diabetes Res Clin Pract 94(3):395–403

    Article  PubMed  Google Scholar 

  89. Yang J (2014) Enhanced skeletal muscle for effective glucose homeostasis. Prog Mol Biol Transl Sci 121:133–163

    Article  CAS  PubMed  Google Scholar 

  90. Röhling M, Herder C, Roden M, Stemper T, Müssig K (2016) Effects of long-term exercise interventions on glycaemic control in type 1 and type 2 diabetes: a systematic review. Exp Clin Endocrinol Diabetes 124(08):487–494

    Article  PubMed  CAS  Google Scholar 

  91. Davies MJ, D’Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G et al (2018) Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of diabetes (EASD). Diabetologia 61(12):2461–2498

    Article  PubMed  Google Scholar 

  92. Sigal RJ, Armstrong MJ, Colby P, Kenny GP, Plotnikoff RC, Reichert SM et al (2013) Physical activity and diabetes. Can J Diabetes 37:S40–SS4

    Article  PubMed  Google Scholar 

  93. Leite MAFJ, Puga GM, Arantes FJ, Oliveira CJF, Cunha LM, Bortolini MJS et al (2018) Effects of combined and resistance training on the inflammatory profile in breast cancer survivors: a systematic review. Complement Ther Med 36:73–81

    Article  Google Scholar 

  94. Annibalini G, Lucertini F, Agostini D, Vallorani L, Gioacchini A, Barbieri E et al (2017) Concurrent aerobic and resistance training has anti-inflammatory effects and increases both plasma and leukocyte levels of IGF-1 in late middle-aged type 2 diabetic patients. Oxidative Med Cell Longev 2017:3937842. https://doi.org/10.1155/2017/3937842

    Article  CAS  Google Scholar 

  95. Parhampour B, Dadgoo M, Vasaghi-Gharamaleki B, Torkaman G, Ravanbod R, Mirzaii-Dizgah I et al (2019) The effects of six-week resistance, aerobic and combined exercises on the pro-inflammatory and anti-inflammatory markers in overweight patients with moderate haemophilia A: A randomized controlled trial. Haemophilia 25(4):e257–ee66

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Diniz, T.A., Antunes, B.M., Little, J.P., Lira, F.S., Rosa-Neto, J.C. (2022). Exercise Training Protocols to Improve Obesity, Glucose Homeostasis, and Subclinical Inflammation. In: Guest, P.C. (eds) Physical Exercise and Natural and Synthetic Products in Health and Disease. Methods in Molecular Biology, vol 2343. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1558-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1558-4_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1557-7

  • Online ISBN: 978-1-0716-1558-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics