Skip to main content

Fundamentals of Enzyme Kinetics: Michaelis-Menten and Non-Michaelis–Type (Atypical) Enzyme Kinetics

  • Protocol
  • First Online:
Enzyme Kinetics in Drug Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2342))

Abstract

This chapter will provide a general introduction to the kinetics of enzyme-catalyzed reactions, including a general discussion of catalysts, reaction rates, and binding constants. This section will be followed by a discussion of various types of enzyme kinetics observed in drug metabolism reactions. A large number of enzymatic reactions can be adequately described by Michaelis-Menten kinetics. The Michaelis-Menten equation represents a rectangular hyperbola, with a y-asymptote at the Vmax value. However, in other cases, more complex kinetic models are required to explain the observed data. Atypical kinetic profiles are believed to arise from the simultaneous binding of multiple molecules within the active site of the enzyme (Tracy and Hummel, Drug Metab Rev 36:231–242, 2004). Several cytochromes P450 (CYPs) have large active sites that enable binding of multiple molecules (Yano et al., J Biol Chem 279:38091–38094, 2004; Wester et al., J Biol Chem 279:35630–35637, 2004). Thus, atypical kinetics are not uncommon in in vitro drug metabolism studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Champe P, Harvey RA (1994) Lippincott’s illustrated reviews: biochemistry. J.B. Lippincott Company, Philadelphia, PA

    Google Scholar 

  2. Masterson W, Hurley C (1989) Chemistry: principles and reactions. Saunders College Publishing, Philadelphia, PA

    Google Scholar 

  3. Lehninger A, Nelson D, Cox M (1993) Principles of biochemistry. Worth Publishers, New York, NY

    Google Scholar 

  4. Stryer L (1993) Biochemistry. W.H. Freeman and Company, New York, NY

    Google Scholar 

  5. Creighton T (1993) Proteins: structures and molecular properties. W.H. Freeman and Company, New York, NY

    Google Scholar 

  6. Obach RS (2001) The prediction of human clearance from hepatic microsomal metabolism data. Curr Opin Drug Discov Devel 4:36–44

    CAS  PubMed  Google Scholar 

  7. Pelkonen O, Turpeinen M (2007) In vitro-in vivo extrapolation of hepatic clearance: biological tools, scaling factors, model assumptions and correct concentrations. Xenobiotica 37:1066–1089. https://doi.org/10.1080/00498250701620726

    Article  CAS  PubMed  Google Scholar 

  8. Stenesh J (1993) Core topics in biochemistry. Cogno Press, Kalamazoo, Michigan

    Google Scholar 

  9. Segel I (1975) Enzyme kinetics: behavior and analysis of rapid equilibrium and steady state. Wiley, Hoboken, NJ

    Google Scholar 

  10. Gabrielsson J, Weiner D (2006) Pharmacokinetic & pharmacodynamic data analysis: concepts and applications. Swedish Pharmaceutical Press, Stockholm

    Google Scholar 

  11. Nath A, Atkins WM (2006) A theoretical validation of the substrate depletion approach to determining kinetic parameters. Drug Metab Dispos 34:1433–1435. https://doi.org/10.1124/dmd.106.010777

    Article  CAS  PubMed  Google Scholar 

  12. Obach RS, Reed-Hagen AE (2002) Measurement of Michaelis constants for cytochrome P450-mediated biotransformation reactions using a substrate depletion approach. Drug Metab Dispos 30:831–837. https://doi.org/10.1124/dmd.30.7.831

    Article  CAS  PubMed  Google Scholar 

  13. Tracy TS (2003) Atypical enzyme kinetics: their effect on in vitro-in vivo pharmacokinetic predictions and drug interactions. Curr Drug Metab 4:341–346. https://doi.org/10.2174/1389200033489280

    Article  CAS  PubMed  Google Scholar 

  14. Korzekwa KR, Krishnamachary N, Shou M et al (1998) Evaluation of atypical cytochrome P450 kinetics with two-substrate models: evidence that multiple substrates can simultaneously bind to cytochrome P450 active sites. Biochemistry 37:4137–4147. https://doi.org/10.1021/bi9715627

    Article  CAS  PubMed  Google Scholar 

  15. Tracy TS, Hummel MA (2004) Modeling kinetic data from in vitro drug metabolism enzyme experiments. Drug Metab Rev 36:231–242. https://doi.org/10.1081/dmr-120033999

    Article  CAS  PubMed  Google Scholar 

  16. Wei L, Locuson CW, Tracy TS (2007) Polymorphic variants of CYP2C9: mechanisms involved in reduced catalytic activity. Mol Pharmacol 72:1280–1288. https://doi.org/10.1124/mol.107.036178

    Article  CAS  PubMed  Google Scholar 

  17. Houston JB, Kenworthy KE, Galetin A (2003) Typical and atypical enzyme kinetics. In: Drug metabolizing enzymes: cytochrome P450 and other enzymes in drug discovery and development, 1st edn. Marcel Dekker, New York, NY, pp 211–254

    Chapter  Google Scholar 

  18. von Moltke LL, Greenblatt DJ, Duan SX et al (1996) Phenacetin O-deethylation by human liver microsomes in vitro: inhibition by chemical probes, SSRI antidepressants, nefazodone and venlafaxine. Psychopharmacology 128:398–407. https://doi.org/10.1007/s002130050149

    Article  Google Scholar 

  19. Venkatakrishnan K, von Moltke LL, Greenblatt DJ (1998) Human cytochromes P450 mediating phenacetin O-deethylation in vitro: validation of the high affinity component as an index of CYP1A2 activity. J Pharm Sci 87:1502–1507. https://doi.org/10.1021/js980255z

    Article  CAS  PubMed  Google Scholar 

  20. Tracy TS (2006) Atypical cytochrome p450 kinetics: implications for drug discovery. Drugs RD 7:349–363. https://doi.org/10.2165/00126839-200607060-00004

    Article  CAS  Google Scholar 

  21. Hutzler JM, Tracy TS (2002) Atypical kinetic profiles in drug metabolism reactions. Drug Metab Dispos 30:355–362. https://doi.org/10.1124/dmd.30.4.355

    Article  CAS  PubMed  Google Scholar 

  22. Ekins S, Ring BJ, Binkley SN et al (1998) Autoactivation and activation of the cytochrome P450s. Int J Clin Pharmacol Ther 36:642–651

    CAS  PubMed  Google Scholar 

  23. Fisher MB, Campanale K, Ackermann BL et al (2000) In vitro glucuronidation using human liver microsomes and the pore-forming peptide alamethicin. Drug Metab Dispos 28:560–566

    CAS  PubMed  Google Scholar 

  24. Yano JK, Wester MR, Schoch GA et al (2004) The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-A resolution. J Biol Chem 279:38091–38094. https://doi.org/10.1074/jbc.C400293200

    Article  CAS  PubMed  Google Scholar 

  25. Kenworthy KE, Clarke SE, Andrews J, Houston JB (2001) Multisite kinetic models for CYP3A4: simultaneous activation and inhibition of diazepam and testosterone metabolism. Drug Metab Dispos 29:1644–1651

    CAS  PubMed  Google Scholar 

  26. Houston JB, Galetin A (2005) Modelling atypical CYP3A4 kinetics: principles and pragmatism. Arch Biochem Biophys 433:351–360. https://doi.org/10.1016/j.abb.2004.09.010

    Article  CAS  PubMed  Google Scholar 

  27. Galetin A, Clarke SE, Houston JB (2003) Multisite kinetic analysis of interactions between prototypical CYP3A4 subgroup substrates: midazolam, testosterone, and nifedipine. Drug Metab Dispos 31:1108–1116. https://doi.org/10.1124/dmd.31.9.1108

    Article  CAS  PubMed  Google Scholar 

  28. Hutzler JM, Kolwankar D, Hummel MA, Tracy TS (2002) Activation of CYP2C9-mediated metabolism by a series of dapsone analogs: kinetics and structural requirements. Drug Metab Dispos 30:1194–1200. https://doi.org/10.1124/dmd.30.11.1194

    Article  CAS  PubMed  Google Scholar 

  29. Lin Y, Lu P, Tang C et al (2001) Substrate inhibition kinetics for cytochrome P450-catalyzed reactions. Drug Metab Dispos 29:368–374

    CAS  PubMed  Google Scholar 

  30. Zhang Z-Y, Wong YN (2005) Enzyme kinetics for clinically relevant CYP inhibition. Curr Drug Metab 6:241–257. https://doi.org/10.2174/1389200054021834

    Article  CAS  PubMed  Google Scholar 

  31. Zhou J, Tracy TS, Remmel RP (2010) Glucuronidation of dihydrotestosterone and trans-androsterone by recombinant UDP-glucuronosyltransferase (UGT) 1A4: evidence for multiple UGT1A4 aglycone binding sites. Drug Metab Dispos 38:431–440. https://doi.org/10.1124/dmd.109.028712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Motulsky H, Christopoulos A (2003) Fitting models to biological data using linear and nonlinear regression: a practical guide to curve fitting, GraphFit, Inc

    Google Scholar 

  33. Houston JB, Kenworthy KE (2000) In vitro-in vivo scaling of CYP kinetic data not consistent with the classical Michaelis-Menten model. Drug Metab Dispos 28:246–254

    CAS  PubMed  Google Scholar 

  34. Tang W, Stearns RA, Kwei GY et al (1999) Interaction of diclofenac and quinidine in monkeys: stimulation of diclofenac metabolism. J Pharmacol Exp Ther 291:1068–1074

    CAS  PubMed  Google Scholar 

  35. Egnell A-C, Houston B, Boyer S (2003) In vivo CYP3A4 heteroactivation is a possible mechanism for the drug interaction between felbamate and carbamazepine. J Pharmacol Exp Ther 305:1251–1262. https://doi.org/10.1124/jpet.102.047530

    Article  CAS  PubMed  Google Scholar 

  36. Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  37. Hofstee BH (1959) Non-inverted versus inverted plots in enzyme kinetics. Nature 184:1296–1298. https://doi.org/10.1038/1841296b0

    Article  CAS  PubMed  Google Scholar 

  38. Cornish-Bowden A (1979) Fundamentals of enzyme kinetics. Portland Press, London

    Google Scholar 

  39. Bevington P (1994) Data reduction and error analysis for the physical sciences. McGraw-Hill, Boston, MA

    Google Scholar 

  40. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleanore Seibert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Seibert, E., Tracy, T.S. (2021). Fundamentals of Enzyme Kinetics: Michaelis-Menten and Non-Michaelis–Type (Atypical) Enzyme Kinetics. In: Nagar, S., Argikar, U.A., Tweedie, D. (eds) Enzyme Kinetics in Drug Metabolism. Methods in Molecular Biology, vol 2342. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1554-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1554-6_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1553-9

  • Online ISBN: 978-1-0716-1554-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics