Skip to main content

Characteristics of Major Drug Metabolizing Cytochrome P450 Enzymes

  • Protocol
  • First Online:
Cytochrome P450

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Cytochrome P450 (CYP) enzymes have been widely studied for drug discovery and development. While much has been discovered in terms of characteristics of each major drug metabolizing CYPs, challenges still exist in terms of predictions for CYP-mediated Drug–Drug interactions (DDI), genetic variations, contributions to idiosyncratic drug-induced toxicity, and effects of CYP regulation in disease. New substrates for CYPs are discovered every day, requiring extensive characterization for each of these challenges throughout the drug discovery process. There will always be a need for the development and refinement of in vitro assays to predict the pharmacokinetic properties of a drug metabolized by CYP accurately. This chapter provides background information to investigate the various CYP-related properties of xenobiotics in a drug discovery pipeline. Chapters 322 provide detailed CYP and non-CYP in vitro methods and protocols that can be easily established in drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Testa B, Pedretti A, Vistoli G (2012) Reactions and enzymes in the metabolism of drugs and other xenobiotics. Drug Discov Today 17(11):549–560

    Article  CAS  PubMed  Google Scholar 

  2. Cerny MA (2016) Prevalence of non-cytochrome P450–mediated metabolism in food and drug administration–approved oral and intravenous drugs: 2006–2015. Drug Metab Dispos 44(8):1246–1252

    Article  CAS  PubMed  Google Scholar 

  3. Guengerich FP (2015) Human cytochrome P450 enzymes. In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism, and biochemistry. Springer International Publishing, Cham

    Google Scholar 

  4. Rendic S, Guengerich FP (2015) Survey of human oxidoreductases and cytochrome P450 enzymes involved in the metabolism of xenobiotic and natural chemicals. Chem Res Toxicol 28(1):38–42

    Article  CAS  PubMed  Google Scholar 

  5. Zanger UM, Schwab M (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 138(1):103–141

    Article  CAS  PubMed  Google Scholar 

  6. Rendic S, Di Carlo FJ (1997) Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev 29(1-2):413–580

    Article  CAS  PubMed  Google Scholar 

  7. Honkakoski P, Negishi M (2000) Regulation of cytochrome P450 (CYP) genes by nuclear receptors. Biochem J 347(2):321–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Palrasu M, Siddavaram N (2018) Cytochrome P450 structure, function and clinical significance: a review. Curr Drug Targets 19(1):38–54

    Google Scholar 

  9. The Flockhart Table (2019) The Trustees of Indiana University. https://drug-interactions.medicine.iu.edu/Main-Table.aspx

  10. Xu M, Ju W, Hao H, Wang G, Li P (2013) Cytochrome P450 2J2: distribution, function, regulation, genetic polymorphisms and clinical significance. Drug Metab Rev 45(3):311–352

    Article  CAS  PubMed  Google Scholar 

  11. Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ, Waterman MR, Gotoh O, Coon MJ, Estabrook RW, Gunsalus IC, Nebert DW (1996) P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6(1):1–42

    Article  CAS  PubMed  Google Scholar 

  12. Sevrioukova IF, Poulos TL (2010) Structure and mechanism of the complex between cytochrome P4503A4 and ritonavir. PNAS 107(43):18422–18427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guengerich FP (2012) Cytochromes P450. In: Metabolism of drugs and other xenobiotics. Wiley-VCH, Weinheim

    Google Scholar 

  14. Black SD, French JS, Williams CH Jr, Coon MJ (1979) Role of a hydrophobic polypeptide in the N-terminal region of NADPH-cytochrome P-450 reductase in complex formation with P-450LM. Biochem Biophys Res Commun 91(4):1528–1535

    Article  CAS  PubMed  Google Scholar 

  15. Schenkman JB, Jansson I (2003) The many roles of cytochrome b5. Pharmacol Ther 97(2):139–152

    Article  CAS  PubMed  Google Scholar 

  16. Omura T (1999) Forty years of cytochrome P450. Biochem Biophys Res Commun 266(3):690–698

    Article  CAS  PubMed  Google Scholar 

  17. Poulos TL, Finzel BC, Howard AJ (1986) Crystal structure of substrate-free pseudomonas putida cytochrome P-450. Biochemistry 25(18):5314–5322

    Article  CAS  PubMed  Google Scholar 

  18. Poulos TL, Finzel BC, Howard AJ (1987) High-resolution crystal structure of cytochrome P450cam. J Mol Biol 195(3):687–700

    Article  CAS  PubMed  Google Scholar 

  19. Sligar IGDaSG (2015) Activation of molecular oxygen in cytochromes P450. In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism, and biochemistry, 4th edn. Springer, Cham

    Google Scholar 

  20. Sehnal D, Rose AS, Koča J, Burley SK, Velankar S (2018) Mol*: towards a common library and tools for web molecular graphics. Paper presented at the Proceedings of the Workshop on Molecular Graphics and Visual Analysis of Molecular Data. Brno, Czech Republic

    Google Scholar 

  21. Guengerich FP (2017) Kinetic deuterium isotope effects in cytochrome P450 reactions. Methods Enzymol 596:217–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Backes WL, Kelley RW (2003) Organization of multiple cytochrome P450s with NADPH-cytochrome P450 reductase in membranes. Pharmacol Ther 98(2):221–233

    Article  CAS  PubMed  Google Scholar 

  23. Denisov IG, Makris TM, Sligar SG, Schlichting I (2005) Structure and chemistry of cytochrome P450. Chem Rev 105(6):2253–2278

    Article  CAS  PubMed  Google Scholar 

  24. Liu YT, Hao HP, Liu CX, Wang GJ, Xie HG (2007) Drugs as CYP3A probes, inducers, and inhibitors. Drug Metab Rev 39(4):699–721

    Article  CAS  PubMed  Google Scholar 

  25. Kawakami H, Ohtsuki S, Kamiie J, Suzuki T, Abe T, Terasaki T (2011) Simultaneous absolute quantification of 11 cytochrome P450 isoforms in human liver microsomes by liquid chromatography tandem mass spectrometry with in silico target peptide selection. J Pharm Sci 100(1):341–352

    Article  CAS  PubMed  Google Scholar 

  26. Guengerich FP (2001) Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 14(6):611–650

    Article  CAS  PubMed  Google Scholar 

  27. Shimada T, Yamazaki H, Mimura M, Wakamiya N, Ueng YF, Guengerich FP, Inui Y (1996) Characterization of microsomal cytochrome P450 enzymes involved in the oxidation of xenobiotic chemicals in human fetal liver and adult lungs. Drug Metab Dispos 24(5):515–522

    CAS  PubMed  Google Scholar 

  28. Zevin S, Benowitz NL (1999) Drug interactions with tobacco smoking. An update. Clin Pharmacokinet 36(6):425–438

    Article  CAS  PubMed  Google Scholar 

  29. Sono M, Roach MP, Coulter ED, Dawson JH (1996) Heme-containing oxygenases. Chem Rev 96(7):2841–2888

    Article  CAS  PubMed  Google Scholar 

  30. Trager WF (2007) 5.05—Principles of drug metabolism 1: redox reactions. In: Taylor JB, Triggle DJ (eds) Comprehensive medicinal chemistry II. Elsevier, Oxford

    Google Scholar 

  31. Smyser BP, Levi PE, Hodgson E (1986) Interactions of diethylphenylphosphine with purified, reconstituted mouse liver cytochrome P-450 monooxygenase systems. Biochem Pharmacol 35(10):1719–1723

    Article  CAS  PubMed  Google Scholar 

  32. Bondon A, Macdonald TL, Harris TM, Guengerich FP (1989) Oxidation of cycloalkylamines by cytochrome P-450. Mechanism-based inactivation, adduct formation, ring expansion, and nitrone formation. J Biol Chem 264(4):1988–1997

    Article  CAS  PubMed  Google Scholar 

  33. Guengerich FP (1989) Oxidation of halogenated compounds by cytochrome P-450, peroxidases, and model metalloporphyrins. J Biol Chem 264(29):17098–17205

    Article  CAS  PubMed  Google Scholar 

  34. Yildiz D (2004) Nicotine, its metabolism and an overview of its biological effects. Toxicon 43(6):619–632

    Article  CAS  PubMed  Google Scholar 

  35. Patel YM, Stram DO, Wilkens LR, Park SS, Henderson BE, Le Marchand L, Haiman CA, Murphy SE (2015) The contribution of common genetic variation to nicotine and cotinine glucuronidation in multiple ethnic/racial populations. Cancer Epidemiol Biomark Prev 24(1):119–127

    Article  CAS  Google Scholar 

  36. Nakajima M, Yamamoto T, Nunoya K, Yokoi T, Nagashima K, Inoue K, Funae Y, Shimada N, Kamataki T, Kuroiwa Y (1996) Role of human cytochrome P4502A6 in C-oxidation of nicotine. Drug Metab Dispos 24(11):1212–1217

    CAS  PubMed  Google Scholar 

  37. Benowitz NL, Jacob P 3rd, Fong I, Gupta S (1994) Nicotine metabolic profile in man: comparison of cigarette smoking and transdermal nicotine. J Pharmacol Exp Ther 268(1):296–303

    CAS  PubMed  Google Scholar 

  38. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, Altman RB, Klein TE (2012) Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 92(4):414–417

    Article  CAS  PubMed  Google Scholar 

  39. Watanabe M, Watanabe N, Maruyama S, Kawashiro T (2015) Comparative metabolic study between two selective estrogen receptor modulators, toremifene and tamoxifen, in human liver microsomes. Drug Metab Pharmacokinet 30(5):325–333

    Article  CAS  PubMed  Google Scholar 

  40. Bao Z, He XY, Ding X, Prabhu S, Hong JY (2005) Metabolism of nicotine and cotinine by human cytochrome P450 2A13. Drug Metab Dispos 33(2):258–261

    Article  CAS  PubMed  Google Scholar 

  41. Mwenifumbo JC, Tyndale RF (2009) Molecular genetics of nicotine metabolism. Handb Exp Pharmacol 192:235–259

    Article  CAS  Google Scholar 

  42. Yamanaka H, Nakajima M, Fukami T, Sakai H, Nakamura A, Katoh M, Takamiya M, Aoki Y, Yokoi T (2005) CYP2A6 AND CYP2B6 are involved in nornicotine formation from nicotine in humans: interindividual differences in these contributions. Drug Metab Dispos 33(12):1811–1818

    CAS  PubMed  Google Scholar 

  43. Bessems JG, Vermeulen NP (2001) Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Crit Rev Toxicol 31(1):55–138

    Article  CAS  PubMed  Google Scholar 

  44. Prescott LF (1983) Paracetamol overdosage. Pharmacological considerations and clinical management. Drugs 25(3):290–314

    Article  CAS  PubMed  Google Scholar 

  45. McGill MR, Jaeschke H (2013) Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm Res 30(9):2174–2187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Raucy JL, Lasker JM, Lieber CS, Black M (1989) Acetaminophen activation by human liver cytochromes P450IIE1 and P450IA2. Arch Biochem Biophys 271(2):270–283

    Article  CAS  PubMed  Google Scholar 

  47. Chen W, Koenigs LL, Thompson SJ, Peter RM, Rettie AE, Trager WF, Nelson SD (1998) Oxidation of acetaminophen to its toxic quinone imine and nontoxic catechol metabolites by baculovirus-expressed and purified human cytochromes P450 2E1 and 2A6. Chem Res Toxicol 11(4):295–301

    Article  CAS  PubMed  Google Scholar 

  48. Hazai E, Vereczkey L, Monostory K (2002) Reduction of toxic metabolite formation of acetaminophen. Biochem Biophys Res Commun 291(4):1089–1094

    Article  CAS  PubMed  Google Scholar 

  49. Manyike PT, Kharasch ED, Kalhorn TF, Slattery JT (2000) Contribution of CYP2E1 and CYP3A to acetaminophen reactive metabolite formation. Clin Pharmacol Ther 67(3):275–282

    Article  CAS  PubMed  Google Scholar 

  50. Dong H, Haining RL, Thummel KE, Rettie AE, Nelson SD (2000) Involvement of human cytochrome P450 2D6 in the bioactivation of acetaminophen. Drug Metab Dispos 28(12):1397–1400

    CAS  PubMed  Google Scholar 

  51. Laine JE, Auriola S, Pasanen M, Juvonen RO (2009) Acetaminophen bioactivation by human cytochrome P450 enzymes and animal microsomes. Xenobiotica 39(1):11–21

    Article  CAS  PubMed  Google Scholar 

  52. Thummel KE, Lee CA, Kunze KL, Nelson SD, Slattery JT (1993) Oxidation of acetaminophen to N-acetyl-p-aminobenzoquinone imine by human CYP3A4. Biochem Pharmacol 45(8):1563–1569

    Article  CAS  PubMed  Google Scholar 

  53. Patten CJ, Thomas PE, Guy RL, Lee M, Gonzalez FJ, Guengerich FP, Yang CS (1993) Cytochrome P450 enzymes involved in acetaminophen activation by rat and human liver microsomes and their kinetics. Chem Res Toxicol 6(4):511–518

    Article  CAS  PubMed  Google Scholar 

  54. Guengerich FP, Sohl CD, Chowdhury G (2011) Multi-step oxidations catalyzed by cytochrome P450 enzymes: processive vs. distributive kinetics and the issue of carbonyl oxidation in chemical mechanisms. Arch Biochem Biophys 507(1):126–134

    Article  CAS  PubMed  Google Scholar 

  55. Chowdhury G, Calcutt MW, Guengerich FP (2010) Oxidation of N-Nitrosoalkylamines by human cytochrome P450 2A6: sequential oxidation to aldehydes and carboxylic acids and analysis of reaction steps. J Biol Chem 285(11):8031–8044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sohl CD, Isin EM, Eoff RL, Marsch GA, Stec DF, Guengerich FP (2008) Cooperativity in oxidation reactions catalyzed by cytochrome P450 1A2: highly cooperative pyrene hydroxylation and multiphasic kinetics of ligand binding. J Biol Chem 283(11):7293–7308

    Article  CAS  PubMed  Google Scholar 

  57. Kuribayashi S, Goto K, Naito S, Kamataki T, Yamazaki H (2009) Human cytochrome P450 1A2 involvement in the formation of reactive metabolites from a species-specific hepatotoxic pyrazolopyrimidine derivative, 5-n-butyl-7-(3,4,5-trimethoxybenzoylamino)pyrazolo[1,5-a]pyrimidine. Chem Res Toxicol 22(2):323–331

    Article  CAS  PubMed  Google Scholar 

  58. Guengerich FP, Kim DH (1991) Enzymatic oxidation of ethyl carbamate to vinyl carbamate and its role as an intermediate in the formation of 1,N6-ethenoadenosine. Chem Res Toxicol 4(4):413–421

    Article  CAS  PubMed  Google Scholar 

  59. Stiborova M, Frei E, Schmeiser HH, Arlt VM, Martinek V (2014) Mechanisms of enzyme-catalyzed reduction of two carcinogenic nitro-aromatics, 3-nitrobenzanthrone and aristolochic acid I: experimental and theoretical approaches. Int J Mol Sci 15(6):10271–10295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nishida CR, Lee M, de Montellano PR (2010) Efficient hypoxic activation of the anticancer agent AQ4N by CYP2S1 and CYP2W1. Mol Pharmacol 78(3):497–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Leung L, Kalgutkar AS, Obach RS (2012) Metabolic activation in drug-induced liver injury. Drug Metab Rev 44(1):18–33

    Article  CAS  PubMed  Google Scholar 

  62. Teppner M, Boess F, Ernst B, Pahler A (2016) Biomarkers of flutamide-bioactivation and oxidative stress in vitro and in vivo. Drug Metab Dispos 44(4):560–569

    Article  CAS  PubMed  Google Scholar 

  63. Lins R, Broekhuysen J, Necciari J, Deroubaix X (1999) Pharmacokinetic profile of 14C-labeled clopidogrel. Semin Thromb Hemost 25(Suppl 2):29–33

    CAS  PubMed  Google Scholar 

  64. Caplain H, Donat F, Gaud C, Necciari J (1999) Pharmacokinetics of clopidogrel. Semin Thromb Hemost 25(Suppl 2):25–28

    CAS  PubMed  Google Scholar 

  65. Savi P, Herbert JM, Pflieger AM, Dol F, Delebassee D, Combalbert J, Defreyn G, Maffrand JP (1992) Importance of hepatic metabolism in the antiaggregating activity of the thienopyridine clopidogrel. Biochem Pharmacol 44(3):527–532

    Article  CAS  PubMed  Google Scholar 

  66. Kazui M, Nishiya Y, Ishizuka T, Hagihara K, Farid NA, Okazaki O, Ikeda T, Kurihara A (2010) Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab Dispos 38(1):92–99

    Article  CAS  PubMed  Google Scholar 

  67. Savi P, Pereillo JM, Uzabiaga MF, Combalbert J, Picard C, Maffrand JP, Pascal M, Herbert JM (2000) Identification and biological activity of the active metabolite of clopidogrel. Thromb Haemost 84(5):891–896

    Article  CAS  PubMed  Google Scholar 

  68. Tuffal G, Roy S, Lavisse M, Brasseur D, Schofield J, Delesque Touchard N, Savi P, Bremond N, Rouchon MC, Hurbin F, Sultan E (2011) An improved method for specific and quantitative determination of the clopidogrel active metabolite isomers in human plasma. Thromb Haemost 105(4):696–705

    Article  CAS  PubMed  Google Scholar 

  69. Dansette PM, Rosi J, Bertho G, Mansuy D (2012) Cytochromes P450 catalyze both steps of the major pathway of clopidogrel bioactivation, whereas paraoxonase catalyzes the formation of a minor thiol metabolite isomer. Chem Res Toxicol 25(2):348–356

    Article  CAS  PubMed  Google Scholar 

  70. Djebli N, Fabre D, Boulenc X, Fabre G, Sultan E, Hurbin F (2015) Physiologically based pharmacokinetic modeling for sequential metabolism: effect of CYP2C19 genetic polymorphism on clopidogrel and clopidogrel active metabolite pharmacokinetics. Drug Metab Dispos 43(4):510–522

    Article  CAS  PubMed  Google Scholar 

  71. Dekant W (2009) The role of biotransformation and bioactivation in toxicity. EXS 99:57–86

    CAS  PubMed  Google Scholar 

  72. James LP, Letzig L, Simpson PM, Capparelli E, Roberts DW, Hinson JA, Davern TJ, Lee WM (2009) Pharmacokinetics of acetaminophen-protein adducts in adults with acetaminophen overdose and acute liver failure. Drug Metab Dispos 37(8):1779–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mazaleuskaya LL, Sangkuhl K, Thorn CF, FitzGerald GA, Altman RB, Klein TE (2015) PharmGKB summary: pathways of acetaminophen metabolism at the therapeutic versus toxic doses. Pharmacogenet Genomics 25(8):416–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Park BK, Boobis A, Clarke S, Goldring CE, Jones D, Kenna JG, Lambert C, Laverty HG, Naisbitt DJ, Nelson S, Nicoll-Griffith DA, Obach RS, Routledge P, Smith DA, Tweedie DJ, Vermeulen N, Williams DP, Wilson ID, Baillie TA (2011) Managing the challenge of chemically reactive metabolites in drug development. Nat Rev Drug Discov 10(4):292–306

    Article  CAS  PubMed  Google Scholar 

  75. Eno MR, Cameron MD (2015) Gauging reactive metabolites in drug-induced toxicity. Curr Med Chem 22(4):465–489

    Article  CAS  PubMed  Google Scholar 

  76. Shu YZ, Johnson BM, Yang TJ (2008) Role of biotransformation studies in minimizing metabolism-related liabilities in drug discovery. AAPS J 10(1):178–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Walsh JS, Miwa GT (2011) Bioactivation of drugs: risk and drug design. Annu Rev Pharmacol Toxicol 51:145–167

    Article  CAS  PubMed  Google Scholar 

  78. Dalvie DK, Kalgutkar AS, Khojasteh-Bakht SC, Obach RS, O’Donnell JP (2002) Biotransformation reactions of five-membered aromatic heterocyclic rings. Chem Res Toxicol 15(3):269–299

    Article  CAS  PubMed  Google Scholar 

  79. Kalgutkar AS, Soglia JR (2005) Minimising the potential for metabolic activation in drug discovery. Expert Opin Drug Metab Toxicol 1(1):91–142

    Article  CAS  PubMed  Google Scholar 

  80. Kalgutkar AS, Gardner I, Obach RS, Shaffer CL, Callegari E, Henne KR, Mutlib AE, Dalvie DK, Lee JS, Nakai Y, O’Donnell JP, Boer J, Harriman SP (2005) A comprehensive listing of bioactivation pathways of organic functional groups. Curr Drug Metab 6(3):161–225

    Article  CAS  PubMed  Google Scholar 

  81. Zhou S, Chan E, Duan W, Huang M, Chen YZ (2005) Drug bioactivation, covalent binding to target proteins and toxicity relevance. Drug Metab Rev 37(1):41–213

    Article  CAS  PubMed  Google Scholar 

  82. Wen B, Fitch WL (2009) Analytical strategies for the screening and evaluation of chemically reactive drug metabolites. Expert Opin Drug Metab Toxicol 5(1):39–55

    Article  CAS  PubMed  Google Scholar 

  83. Dahal UP, Obach RS, Gilbert AM (2013) Benchmarking in vitro covalent binding burden as a tool to assess potential toxicity caused by nonspecific covalent binding of covalent drugs. Chem Res Toxicol 26(11):1739–1745

    Article  CAS  PubMed  Google Scholar 

  84. Obach RS, Kalgutkar AS, Soglia JR, Zhao SX (2008) Can in vitro metabolism-dependent covalent binding data in liver microsomes distinguish hepatotoxic from nonhepatotoxic drugs? An analysis of 18 drugs with consideration of intrinsic clearance and daily dose. Chem Res Toxicol 21(9):1814–1822

    Article  CAS  PubMed  Google Scholar 

  85. Bauman JN, Kelly JM, Tripathy S, Zhao SX, Lam WW, Kalgutkar AS, Obach RS (2009) Can in vitro metabolism-dependent covalent binding data distinguish hepatotoxic from nonhepatotoxic drugs? An analysis using human hepatocytes and liver S-9 fraction. Chem Res Toxicol 22(2):332–340

    Article  CAS  PubMed  Google Scholar 

  86. Gan J, Ruan Q, He B, Zhu M, Shyu WC, Humphreys WG (2009) In vitro screening of 50 highly prescribed drugs for thiol adduct formation--comparison of potential for drug-induced toxicity and extent of adduct formation. Chem Res Toxicol 22(4):690–698

    Article  CAS  PubMed  Google Scholar 

  87. Nakayama S, Atsumi R, Takakusa H, Kobayashi Y, Kurihara A, Nagai Y, Nakai D, Okazaki O (2009) A zone classification system for risk assessment of idiosyncratic drug toxicity using daily dose and covalent binding. Drug Metab Dispos 37(9):1970–1977

    Article  CAS  PubMed  Google Scholar 

  88. Zhang Z, Tang W (2018) Drug metabolism in drug discovery and development. Acta Pharm Sin B 8(5):721–732

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kalgutkar AS (2017) Liabilities associated with the formation of “Hard” electrophiles in reactive metabolite trapping screens. Chem Res Toxicol 30(1):220–238

    Article  CAS  PubMed  Google Scholar 

  90. Sodhi JK, Delarosa EM, Halladay JS, Driscoll JP, Mulder T, Dansette PM, Khojasteh SC (2017) Inhibitory effects of trapping agents of sulfur drug reactive intermediates against major human cytochrome P450 isoforms. Int J Mol Sci 18(7):1553

    Article  PubMed Central  CAS  Google Scholar 

  91. Wang Q, Liu H, Slavsky M, Fitzgerald M, Lu C, O’Shea T (2019) A high-throughput glutathione trapping assay with combined high sensitivity and specificity in high-resolution mass spectrometry by applying product ion extraction and data-dependent neutral loss. J Mass Spectromet JMS 54(2):158–166

    Article  CAS  Google Scholar 

  92. Leung L, Kalgutkar AS, Obach RS (2012) Metabolic activation in drug-induced liver injury. Drug Metab Rev 44(1):18–33

    Article  CAS  PubMed  Google Scholar 

  93. Gorrod JW, Whittlesea CM, Lam SP (1991) Trapping of reactive intermediates by incorporation of 14C-sodium cyanide during microsomal oxidation. Adv Exp Med Biol 283:657–664

    Article  CAS  PubMed  Google Scholar 

  94. Sahali-Sahly Y, Balani SK, Lin JH, Baillie TA (1996) In vitro studies on the metabolic activation of the furanopyridine L-754,394, a highly potent and selective mechanism-based inhibitor of cytochrome P450 3A4. Chem Res Toxicol 9(6):1007–1012

    Article  CAS  PubMed  Google Scholar 

  95. Olsen R, Molander P, Ovrebo S, Ellingsen DG, Thorud S, Thomassen Y, Lundanes E, Greibrokk T, Backman J, Sjoholm R, Kronberg L (2005) Reaction of glyoxal with 2’-deoxyguanosine, 2’-deoxyadenosine, 2’-deoxycytidine, cytidine, thymidine, and calf thymus DNA: identification of DNA adducts. Chem Res Toxicol 18(4):730–739

    Article  CAS  PubMed  Google Scholar 

  96. Watkins PB, Wrighton SA, Maurel P, Schuetz EG, Mendez-Picon G, Parker GA, Guzelian PS (1985) Identification of an inducible form of cytochrome P-450 in human liver. Proc Natl Acad Sci U S A 82(18):6310–6314. https://doi.org/10.1073/pnas.82.18.6310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Waxman DJ, Azaroff L (1992) Phenobarbital induction of cytochrome P-450 gene expression. Biochem J 281(Pt 3):577–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tompkins LM, Wallace AD (2007) Mechanisms of cytochrome P450 induction. J Biochem Mol Toxicol 21(4):176–181

    Article  CAS  PubMed  Google Scholar 

  99. Pelkonen O, Turpeinen M, Hakkola J, Honkakoski P, Hukkanen J, Raunio H (2008) Inhibition and induction of human cytochrome P450 enzymes: current status. Arch Toxicol 82(10):667–715

    Article  CAS  PubMed  Google Scholar 

  100. Guengerich FP, Shimada T, Iwasaki M, Butler MA, Kadlubar FF (1990) Activation of carcinogens by human liver cytochromes P-450. Basic Life Sci 53:381–396

    CAS  PubMed  Google Scholar 

  101. Lin JH (2006) CYP induction-mediated drug interactions: in vitro assessment and clinical implications. Pharm Res 23(6):1089–1116

    Article  CAS  PubMed  Google Scholar 

  102. Watkins PB, Wrighton SA, Schuetz EG, Maurel P, Guzelian PS (1986) Macrolide antibiotics inhibit the degradation of the glucocorticoid-responsive cytochrome P-450p in rat hepatocytes in vivo and in primary monolayer culture. J Biol Chem 261(14):6264–6271

    Article  CAS  PubMed  Google Scholar 

  103. Bloomer JC, Woods FR, Haddock RE, Lennard MS, Tucker GT (1992) The role of cytochrome P4502D6 in the metabolism of paroxetine by human liver microsomes. Br J Clin Pharmacol 33(5):521–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ajayi FO, Sun H, Perry J (2000) Adverse drug reactions: a review of relevant factors. J Clin Pharmacol 40(10):1093–1101

    Article  CAS  PubMed  Google Scholar 

  105. Lu AY (1998) Drug-metabolism research challenges in the new millennium: individual variability in drug therapy and drug safety. Drug Metab Dispos 26(12):1217–1222

    CAS  PubMed  Google Scholar 

  106. Eichelbaum M, Ingelman-Sundberg M, Evans WE (2006) Pharmacogenomics and individualized drug therapy. Annu Rev Med 57:119–137

    Article  CAS  PubMed  Google Scholar 

  107. Zhou SF, Di YM, Chan E, Du YM, Chow VD, Xue CC, Lai X, Wang JC, Li CG, Tian M, Duan W (2008) Clinical pharmacogenetics and potential application in personalized medicine. Curr Drug Metab 9(8):738–784

    Article  CAS  PubMed  Google Scholar 

  108. Furuta T, Ohashi K, Kosuge K, Zhao XJ, Takashima M, Kimura M, Nishimoto M, Hanai H, Kaneko E, Ishizaki T (1999) CYP2C19 genotype status and effect of omeprazole on intragastric pH in humans. Clin Pharmacol Ther 65(5):552–561

    Article  CAS  PubMed  Google Scholar 

  109. Lee CR, Goldstein JA, Pieper JA (2002) Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics 12(3):251–263

    Article  CAS  PubMed  Google Scholar 

  110. Consortium TIWP (2009) Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med 360(8):753–764

    Article  Google Scholar 

  111. Sata F, Sapone A, Elizondo G, Stocker P, Miller VP, Zheng W, Raunio H, Crespi CL, Gonzalez FJ (2000) CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: evidence for an allelic variant with altered catalytic activity. Clin Pharmacol Ther 67(1):48–56

    Article  CAS  PubMed  Google Scholar 

  112. Lamba JK, Lin YS, Thummel K, Daly A, Watkins PB, Strom S, Zhang J, Schuetz EG (2002) Common allelic variants of cytochrome P4503A4 and their prevalence in different populations. Pharmacogenetics 12(2):121–132

    Article  CAS  PubMed  Google Scholar 

  113. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, Watkins PB, Daly A, Wrighton SA, Hall SD, Maurel P, Relling M, Brimer C, Yasuda K, Venkataramanan R, Strom S, Thummel K, Boguski MS, Schuetz E (2001) Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 27(4):383–391

    Article  CAS  PubMed  Google Scholar 

  114. Zhou S-F, Liu J-P, Chowbay B (2009) Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 41(2):89–295

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Johnson, K.M., Su, D., Zhang, D. (2021). Characteristics of Major Drug Metabolizing Cytochrome P450 Enzymes. In: Yan, Z., Caldwell, G.W. (eds) Cytochrome P450. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1542-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1542-3_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1541-6

  • Online ISBN: 978-1-0716-1542-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics