Skip to main content

Dynamic Modeling of Transcriptional Gene Regulatory Networks

  • Protocol
  • First Online:
Modeling Transcriptional Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2328))

Abstract

Diverse cellular phenotypes are determined by groups of transcription factors (TFs) and other regulators that influence each others’ gene expression, forming transcriptional gene regulatory networks (GRNs). In many biological contexts, especially in development and associated diseases, the expression of the genes in GRNs is not static but evolves in time. Modeling the dynamics of GRN state is an important approach for understanding diverse cellular phenomena such as cell-fate specification, pluripotency and cell-fate reprogramming, oncogenesis, and tissue regeneration. In this protocol, we describe how to model GRNs using a data-driven dynamic modeling methodology, gene circuits. Gene circuits do not require knowledge of the GRN topology and connectivity but instead learn them from training data, making them very general and applicable to diverse biological contexts. We utilize the MATLAB-based gene circuit modeling software Fast Inference of Gene Regulation (FIGR) for training the model on quantitative gene expression data and simulating the GRN. We describe all the steps in the modeling life cycle, from formulating the model, training the model using FIGR, simulating the GRN, to analyzing and interpreting the model output. This protocol highlights these steps with the example of a dynamical model of the gap gene GRN involved in Drosophila segmentation and includes example MATLAB statements for each step.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Abdol AM, Cicin-Sain D, Kaandorp JA, Crombach A (2017) Scatter search applied to the inference of a development gene network. Computation 5(2). https://doi.org/10.3390/computation5020022. https://www.mdpi.com/2079-3197/5/2/22

  2. Akam M (1987) The molecular basis for metameric pattern in the Drosophila embryo. Development 101:1–22

    CAS  PubMed  Google Scholar 

  3. Ashyraliyev M, Jaeger J, Blom JG (2008) Parameter estimation and determinability analysis applied to drosophila gap gene circuits. BMC Syst Biol 2:83. https://doi.org/10.1186/1752-0509-2-83

    PubMed  PubMed Central  Google Scholar 

  4. Ashyraliyev M, Siggens K, Janssens H, Blom J, Akam M, Jaeger J (2009) Gene circuit analysis of the terminal gap gene huckebein. PLoS Comput Biol 5(10):e1000548. https://doi.org/10.1371/journal.pcbi.1000548

    PubMed  PubMed Central  Google Scholar 

  5. Balaskas N, Ribeiro A, Panovska J, Dessaud E, Sasai N, Page KM, Briscoe J, Ribes V (2012) Gene regulatory logic for reading the sonic hedgehog signaling gradient in the vertebrate neural tube. Cell 148(1–2):273–284. https://doi.org/10.1016/j.cell.2011.10.047

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bonzanni N, Garg A, Feenstra KA, Schütte J, Kinston S, Miranda-Saavedra D, Heringa J, Xenarios I, Göttgens B (2013) Hard-wired heterogeneity in blood stem cells revealed using a dynamic regulatory network model. Bioinformatics 29(13):i80–i88. https://doi.org/10.1093/bioinformatics/btt243

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chickarmane V, Enver T, Peterson C (2009) Computational modeling of the hematopoietic erythroid-myeloid switch reveals insights into cooperativity, priming, and irreversibility. PLoS Comput Biol 5(1):e1000268. https://doi.org/10.1371/journal.pcbi.1000268

    PubMed  PubMed Central  Google Scholar 

  8. Chu KW (2001) Optimal parallelization of simulated annealing by state mixing. PhD Thesis, Department of Applied Mathematics and Statistics. Stony Brook University

    Google Scholar 

  9. Chu KW, Deng Y, Reinitz J (1999) Parallel simulated annealing by mixing of states. J Comput Phys 148:646–662

    Google Scholar 

  10. Collombet S, van Oevelen C, Sardina Ortega JL, Abou-Jaoudé W, Di Stefano B, Thomas-Chollier M, Graf T, Thieffry D (2017) Logical modeling of lymphoid and myeloid cell specification and transdifferentiation. Proc Natl Acad Sci U S A 114(23):5792–5799. https://doi.org/10.1073/pnas.1610622114

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh CH, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Brown CT, Livi CB, Lee PY, Revilla R, Rust AG, Pan ZJ, Schilstra MJ, Clarke PJC, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L, Bolouri H (2002) A genomic regulatory network for development. Science 295(5560):1669–1678. https://doi.org/10.1126/science.1069883

    CAS  PubMed  Google Scholar 

  12. Fehr DA, Handzlik JE, Manu, Loh YL (2019) Classification-based inference of dynamical models of gene regulatory networks. G3 (Bethesda) 9(12):4183–4195. https://doi.org/10.1534/g3.119.400603

    CAS  Google Scholar 

  13. Gursky VV, Kozlov KN, Samsonov AM, Reinitz J (2008) A model with asymptotically stable dynamics for the network of Drosophila gap genes. Biophysics (Biofizika) 53:164–176

    Google Scholar 

  14. Gursky VV, Panok L, Myasnikova EM, Manu, Samsonova MG, Reinitz J, Samsonov AM (2011) Mechanisms of gap gene expression canalization in the drosophila blastoderm. BMC Syst Biol 5(1):118. https://doi.org/10.1186/1752-0509-5-118

    PubMed  PubMed Central  Google Scholar 

  15. Hamey FK, Nestorowa S, Kinston SJ, Kent DG, Wilson NK, Göttgens B (2017) Reconstructing blood stem cell regulatory network models from single-cell molecular profiles. Proc Natl Acad Sci U S A 114(23):5822–5829. https://doi.org/10.1073/pnas.1610609114

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hastie TJ, Tibshirani RJ, Friedman JH (2009) The elements of statistical learning: data mining, inference, and prediction. Springer, New York

    Google Scholar 

  17. Hengenius JB, Gribskov M, Rundell AE, Fowlkes CC, Umulis DM (2011) Analysis of gap gene regulation in a 3d organism-scale model of the drosophila melanogaster embryo. PLoS One 6(11):e26797. https://doi.org/10.1371/journal.pone.0026797

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hong T, Xing J, Li L, Tyson JJ (2012) A simple theoretical framework for understanding heterogeneous differentiation of cd4+ t cells. BMC Syst Biol 6:66. https://doi.org/10.1186/1752-0509-6-66

    PubMed  PubMed Central  Google Scholar 

  19. Huang S, Guo Y, May G, Enver T (2007) Bifurcation dynamics in lineage-commitment in bipotent progenitor cells. Dev Biol 305:695–713

    CAS  PubMed  Google Scholar 

  20. Jaeger J (2011) The gap gene network. Cell Mol Life Sci 68(2):243–274. https://doi.org/10.1007/s00018-010-0536-y

    CAS  PubMed  Google Scholar 

  21. Jaeger J, Blagov M, Kosman D, Kozlov KN, Manu, Myasnikova E, Surkova S, Vanario-Alonso CE, Samsonova M, Sharp DH, Reinitz J (2004) Dynamical analysis of regulatory interactions in the gap gene system of Drosophila melanogaster. Genetics 167:1721–1737

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Jaeger J, Surkova S, Blagov M, Janssens H, Kosman D, Kozlov KN, Manu, Myasnikova E, Vanario-Alonso CE, Samsonova M, Sharp DH, Reinitz J (2004) Dynamic control of positional information in the early Drosophila embryo. Nature 430:368–371

    CAS  PubMed  Google Scholar 

  23. Jaeger J, Sharp DH, Reinitz J (2007) Known maternal gradients are not sufficient for the establishment of gap domains in Drosophila melanogaster. Mech Dev 124:108–128

    CAS  PubMed  Google Scholar 

  24. Kozlov K, Samsonov A (2009) Deep—differential evolution entirely parallel method for gene regulatory networks. In: Malyshkin V (ed) Parallel computing technologies. Springer, Berlin/Heidelberg, pp 126–132

    Google Scholar 

  25. Kozlov K, Surkova S, Myasnikova E, Reinitz J, Samsonova M (2012) Modeling of gap gene expression in drosophila kruppel mutants. PLoS Comput Biol 8(8):e1002635. https://doi.org/10.1371/journal.pcbi.1002635

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kraut R, Levine M (1991) Mutually repressive interactions between the gap genes giant and Krüppel define middle body regions of the Drosophila embryo. Development 111:611–621

    CAS  PubMed  Google Scholar 

  27. Kueh HY, Champhekhar A, Nutt SL, Elowitz MB, Rothenberg EV (2013) Positive feedback between pu.1 and the cell cycle controls myeloid differentiation. Science. https://doi.org/10.1126/science.1240831

  28. Laslo P, Spooner CJ, Warmflash A, Lancki DW, Lee HJ, Sciammas R, Gantner BN, Dinner AR, Singh H (2006) Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 126(4):755–766. https://doi.org/10.1016/j.cell.2006.06.052

    CAS  PubMed  Google Scholar 

  29. Levine M, Davidson EH (2005) Gene regulatory networks for development. Proc Natl Acad Sci U S A 102(14):4936–4942. https://doi.org/10.1073/pnas.0408031102

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Li C, Wang J (2013) Quantifying cell fate decisions for differentiation and reprogramming of a human stem cell network: landscape and biological paths. PLoS Comput Biol 9(8):e1003165 EP –. https://doi.org/10.1371%2Fjournal.pcbi.1003165

  31. Manu, Surkova S, Spirov AV, Gursky V, Janssens H, Kim A, Radulescu O, Vanario-Alonso CE, Sharp DH, Samsonova M, Reinitz J (2009) Canalization of gene expression and domain shifts in the Drosophila blastoderm by dynamical attractors. PLoS Comput Biol 5:e1000303. https://doi.org/10.1371/journal.pcbi.1000303

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Manu, Surkova S, Spirov AV, Gursky V, Janssens H, Kim A, Radulescu O, Vanario-Alonso CE, Sharp DH, Samsonova M, Reinitz J (2009) Canalization of gene expression in the Drosophila blastoderm by gap gene cross regulation. PLoS Biol 7:e1000049. https://doi.org/10.371/journal.pbio.1000049

    CAS  PubMed  PubMed Central  Google Scholar 

  33. May G, Soneji S, Tipping AJ, Teles J, McGowan SJ, Wu M, Guo Y, Fugazza C, Brown J, Karlsson G, Pina C, Olariu V, Taylor S, Tenen DG, Peterson C, Enver T (2013) Dynamic analysis of gene expression and genome-wide transcription factor binding during lineage specification of multipotent progenitors. Cell Stem Cell 13(6):754–768. https://doi.org/10.1016/j.stem.2013.09.003

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Palani S, Sarkar CA (2008) Positive receptor feedback during lineage commitment can generate ultrasensitivity to ligand and confer robustness to a bistable switch. Biophys J 95(4):1575–1589. https://doi.org/10.1529/biophysj.107.120600

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Peter IS, Faure E, Davidson EH (2012) Predictive computation of genomic logic processing functions in embryonic development. Proc Natl Acad Sci U S A 109(41):16434–16442. https://doi.org/10.1073/pnas.1207852109

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pietak A, Bischof J, LaPalme J, Morokuma J, Levin M (2019) Neural control of body-plan axis in regenerating planaria. PLoS Comput Biol 15(4):e1006904. https://doi.org/10.1371/journal.pcbi.1006904

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Reinitz J, Sharp DH (1995) Mechanism of eve stripe formation. Mech Dev 49:133–158

    CAS  PubMed  Google Scholar 

  38. Reinitz J, Mjolsness E, Sharp DH (1995) Cooperative control of positional information in Drosophila by bicoid and maternal hunchback. J Exp Zool 271:47–56

    CAS  PubMed  Google Scholar 

  39. Sánchez L, Thieffry D (2003) Segmenting the fly embryo: a logical analysis of the pair-rule cross-regulatory module. J Theor Biol 224:517–537

    PubMed  Google Scholar 

  40. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303. https://pubmed.ncbi.nlm.nih.gov/14597658. 14597658[pmid]

  41. Shea MA, Ackers GK (1985) The OR control system of bacteriophage lambda. A physical-chemical model for gene regulation. J Mol Biol 181:211–230

    CAS  PubMed  Google Scholar 

  42. Surkova S, Kosman D, Kozlov K, Manu, Myasnikova E, Samsonova A, Spirov A, Vanario-Alonso CE, Samsonova M, Reinitz J (2008) Characterization of the Drosophila segment determination morphome. Dev Biol 313(2):844–862

    CAS  PubMed  Google Scholar 

  43. Thattai M, van Oudenaarden A (2001) Intrinsic noise in gene regulatory networks. Proc Natl Acad Sci U S A 98:8614–8619

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Theiffry D, Colet M, Thomas R (1993) Formalization of regulatory networks: a logical method and its automatization. Math Model Sci Comput 2:144–151

    Google Scholar 

  45. Tusi BK, Wolock SL, Weinreb C, Hwang Y, Hidalgo D, Zilionis R, Waisman A, Huh JR, Klein AM, Socolovsky M (2018) Population snapshots predict early haematopoietic and erythroid hierarchies. Nature 555(7694):54–60. https://doi.org/10.1038/nature25741

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Tyson JJ, Baumann WT, Chen C, Verdugo A, Tavassoly I, Wang Y, Weiner LM, Clarke R (2011) Dynamic modelling of oestrogen signalling and cell fate in breast cancer cells. Nat Rev Cancer 11(7):523–532. https://doi.org/10.1038/nrc3081

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Umulis DM, Serpe M, O’Connor MB, Othmer HG (2006) Robust, bistable patterning of the dorsal surface of the Drosophila embryo. Proc Natl Acad Sci U S A 103(31):11613–11618

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Vakulenko S, Manu, Reinitz J, Radulescu O (2009) Size regulation in the segmentation of Drosophila: interacting interfaces between localized domains of gene expression ensure robust spatial patterning. Phys Rev Lett 103(16):168102

    PubMed  PubMed Central  Google Scholar 

  49. Verd B, Clark E, Wotton KR, Janssens H, Jiménez-Guri E, Crombach A, Jaeger J (2018) A damped oscillator imposes temporal order on posterior gap gene expression in drosophila. PLoS Biol 16(2):e2003174. https://doi.org/10.1371/journal.pbio.2003174

    PubMed  PubMed Central  Google Scholar 

  50. Volfson D, Marciniak J, Blake WJ, Ostroff N, Tsimring LS, Hasty J (2006) Origins of extrinsic variability in eukaryotic gene expression. Nature 439(7078):861–864. https://doi.org/10.1038/nature04281

    CAS  PubMed  Google Scholar 

  51. Wang J, Xu L, Wang E (2008) Potential landscape and flux framework of nonequilibrium networks: robustness, dissipation, and coherence of biochemical oscillations. Proc Natl Acad Sci U S A 105(34):12271–12276. https://doi.org/10.1073/pnas.0800579105

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Weston BR, Li L, Tyson JJ (2018) Mathematical analysis of cytokine-induced differentiation of granulocyte-monocyte progenitor cells. Front Immunol 9:2048. https://doi.org/10.3389/fimmu.2018.02048

    PubMed  PubMed Central  Google Scholar 

  53. Wotton KR, Jiménez-Guri E, Crombach A, Janssens H, Alcaine-Colet A, Lemke S, Schmidt-Ott U, Jaeger J (2015) Quantitative system drift compensates for altered maternal inputs to the gap gene network of the scuttle fly megaselia abdita. Elife 4. https://doi.org/10.7554/eLife.04785

  54. Wu H, Manu, Jiao R, Ma J (2015) Temporal and spatial dynamics of scaling-specific features of a gene regulatory network in drosophila. Nat Commun 6:10031. https://doi.org/10.1038/ncomms10031

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Handzlik, J.E., Loh, Y.L., Manu (2021). Dynamic Modeling of Transcriptional Gene Regulatory Networks. In: MUKHTAR, S. (eds) Modeling Transcriptional Regulation. Methods in Molecular Biology, vol 2328. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1534-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1534-8_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1533-1

  • Online ISBN: 978-1-0716-1534-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics