Skip to main content

Antibiotic Conditioning and Single Gavage Allows Stable Engraftment of Human Microbiota in Mice

Part of the Methods in Molecular Biology book series (MIMB,volume 2327)

Abstract

Mice transplanted with human microbiota are essential tools for studying the role of microbiota in health and disease, striving for the development of microbiota-modulating therapeutics. Traditionally, germ-free mice have been the principal option for establishing human microbiota-associated (HMA) mouse models, leading to significant insights into the composition and function of the human microbiota. However, there are limitations in using germ-free mice as recipients of human microbiota, including considerable resource allocation to establish and maintain the model and incomplete development of their immune system and physiological functions. Thus, antibiotic-treated, non-germ-free mice have been developed as an alternative to satisfy the growing demand for an accessible HMA mouse model. Several methods have been described for creating “humanized” mice. These protocols vary in their key components, mainly antibiotic conditioning and frequency of oral gavage. To address this practical challenge and formulate a simple and repeatable protocol, we established a HMA mouse model with antibiotic-treated conventional and specific-pathogen free (SPF) C57BL/6J mice, revealing that a single oral gavage allows stable engraftment of the human microbiota. In this chapter, we present our simple protocol for antibiotic conditioning to prepare mice for stable engraftment of human gut microbiota.

Key words

  • Antibiotics
  • Dysbiosis
  • Fecal microbiota transplantation
  • Gut microbiota
  • Human microbiota-associated mice
  • Humanized mice
  • Mouse model
  • Oral gavage

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848

    CrossRef  CAS  Google Scholar 

  2. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    CrossRef  CAS  Google Scholar 

  3. Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920

    CrossRef  Google Scholar 

  4. Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB et al (2012) Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149:1578–1593

    CrossRef  CAS  Google Scholar 

  5. Lu J, Lu L, Yu Y, Cluette-Brown J, Martin CR, Claud EC (2018) Effects of intestinal microbiota on brain development in humanized gnotobiotic mice. Sci Rep 8:1–16

    Google Scholar 

  6. Dupont AW, Dupont HL (2011) The intestinal microbiota and chronic disorders of the gut. Nat Rev Gastroenterol Hepatol 8:523–531

    CrossRef  Google Scholar 

  7. Aron-Wisnewsky J, Prifti E, Belda E, Ichou F, Kayser BD, Dao MC et al (2019) Major microbiota dysbiosis in severe obesity: fate after bariatric surgery. Gut 68:70–82

    CrossRef  CAS  Google Scholar 

  8. Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G et al (2017) Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 5:14

    CrossRef  Google Scholar 

  9. Zou S, Fang L, Lee M-H (2018) Dysbiosis of gut microbiota in promoting the development of colorectal cancer. Gastroenterol Rep 6:1–12

    CrossRef  Google Scholar 

  10. Sharon G, Cruz NJ, Kang DW, Gandal MJ, Wang B, Kim YM et al (2019) Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 177:1600–1618.e17

    CrossRef  CAS  Google Scholar 

  11. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL et al (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214

    CrossRef  Google Scholar 

  12. Nagao-Kitamoto H, Shreiner AB, Gillilland MG, Kitamoto S, Ishii C, Hirayama A et al (2016) Functional characterization of inflammatory bowel disease-associated gut dysbiosis in gnotobiotic mice. Cell Mol Gastron Hepatol 2:468–481

    CrossRef  Google Scholar 

  13. Sobhani I, Bergsten E, Couffin S, Amiot A, Nebbad B, Barau C et al (2019) Colorectal cancer-associated microbiota contributes to oncogenic epigenetic signatures. Proc Natl Acad Sci U S A 116:24285–24295

    CrossRef  CAS  Google Scholar 

  14. Wong SH, Zhao L, Zhang X, Nakatsu G, Han J, Xu W et al (2017) Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology 153:1621–1633.e6

    CrossRef  Google Scholar 

  15. Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 104:979–984

    CrossRef  Google Scholar 

  16. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    CrossRef  Google Scholar 

  17. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101:15718–15723

    CrossRef  Google Scholar 

  18. Hintze KJ, Cox JE, Rrompato G, Benninghoff AD, Ward RE, Broadbent J et al (2014) Broad scope method for creating humanized animal models for animal health and disease research through antibiotic treatment and human fecal transfer. Gut Microbes 5:37–41

    CrossRef  Google Scholar 

  19. Lundberg R, Toft MF, Metzdorff SB, Hansen CHF, Licht TR, Bahl MI et al (2020) Human microbiota-transplanted C57BL/6 mice and offspring display reduced establishment of key bacteria and reduced immune stimulation compared to mouse microbiota-transplantation. Sci Rep 10:1–16

    CrossRef  Google Scholar 

  20. Rodriguez J, Hiel S, Neyrinck AM, Le Roy T, Pötgens SA, Leyrolle Q et al (2020) Discovery of the gut microbial signature driving the efficacy of prebiotic intervention in obese patients. Gut:1–13

    Google Scholar 

  21. Staley C, Kaiser T, Beura LK, Hamilton MJ, Weingarden AR, Bobr A et al (2017) Stable engraftment of human microbiota into mice with a single oral gavage following antibiotic conditioning. Microbiome 5:87

    CrossRef  Google Scholar 

  22. Manichanh C, Reeder J, Gibert P, Varela E, Llopis M, Antolin M et al (2010) Reshaping the gut microbiome with bacterial transplantation and antibiotic intake. Genome Res 20:1411–1419

    CrossRef  CAS  Google Scholar 

  23. Wos-Oxley M, Bleich A, Oxley AP, Kahl S, Janus LM, Smoczek A et al (2012) Comparative evaluation of establishing a human gut microbial community within rodent models. Gut Microbes 3:234–249

    CrossRef  Google Scholar 

  24. Wrzosek L, Ciocan D, Borentain P, Spatz M, Puchois V, Hugot C et al (2018) Transplantation of human microbiota into conventional mice durably reshapes the gut microbiota. Sci Rep 8:6854

    CrossRef  Google Scholar 

  25. Nguyen TLA, Vieira-Silva S, Liston A, Raes J (2015) How informative is the mouse for human gut microbiota research? Dis Model Mech 8:1–16

    CrossRef  CAS  Google Scholar 

  26. Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG et al (2011) Bayesian community-wide culture-independent microbial source tracking. Nat Methods 8:761–U107

    CrossRef  CAS  Google Scholar 

  27. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624

    CrossRef  CAS  Google Scholar 

  28. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    CrossRef  CAS  Google Scholar 

  29. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J et al (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    CrossRef  CAS  Google Scholar 

  30. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ et al (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    CrossRef  CAS  Google Scholar 

  31. Staley C, Kaiser T, Vaughn BP, Graiziger C, Hamilton MJ, Kabage AJ et al (2019) Durable long-term bacterial engraftment following encapsulated fecal microbiota transplantation to treat Clostridium difficile infection. MBio 10:e01586–e01519

    CrossRef  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Harika Nalluri for her input and editing of the final draft of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Staley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhu, Z., Kaiser, T., Staley, C. (2021). Antibiotic Conditioning and Single Gavage Allows Stable Engraftment of Human Microbiota in Mice. In: Adami, G.R. (eds) The Oral Microbiome. Methods in Molecular Biology, vol 2327. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1518-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1518-8_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1517-1

  • Online ISBN: 978-1-0716-1518-8

  • eBook Packages: Springer Protocols