Skip to main content

Measuring Effects of Dietary Fiber on the Murine Oral Microbiome with Enrichment of 16S rDNA Prior to Amplicon Synthesis

  • Protocol
  • First Online:
The Oral Microbiome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2327))

Abstract

The oral cavity houses a diverse consortium of microorganisms corresponding to specific microbial niches within the oral cavity. The complicated nature of sample collection limits the accuracy, reproducibility, and completeness of sample collection of the dentogingival microbiome. Moreover, large variability among human oral samples introduces inexorable confounds. Here, we introduce a method to study the dentogingival microbiome using a murine model that allows for greater control over experimental variability and permits collection of the dentogingival microbiome in an intact state and in its entirety.

As an example of this approach, this chapter provides a workflow to explore the effect of dietary fiber consumption on the murine dentogingival microbiome . Mice are fed diets corresponding to Fiber, Sugar, Fiber + Sugar, and Control groups for 7 weeks. A whole-mandible extraction technique is described to isolate the mandibular dentogingival surfaces. 16S rRNA gene analysis is coupled with removal of unwanted host DNA amplification products to allow an investigation of the dental microbiome in the presence of increased fiber in terms of microbial taxonomic abundance and diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams NB (1963) Microbial ecology of the oral cavity. J Dent Res 42:509–520

    Article  Google Scholar 

  2. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721–5732

    Article  Google Scholar 

  3. Proctor DM, Shelef KM, Gonzalez A, Davis CL, Dethlefsen L, Burns AR et al (2020) Microbial biogeography and ecology of the mouth and implications for periodontal diseases. Periodontol 2000 82:26–41

    Article  Google Scholar 

  4. Proctor DM, Fukuyama JA, Loomer PM, Armitage GC, Lee SA, David NM et al (2018) A spatial gradient of bacterial diversity in the human oral cavity shaped by salivary flow. Nat Commun 9(1):681

    Article  Google Scholar 

  5. Dutzan N, Abusleme L, Bridgeman H, Greenwell-Wild T, Zangerle-Murray T, Fife ME et al (2017) On-going mechanical damage from mastication drives homeostatic Th17 cell responses at the oral barrier. Immunity 46:133–147

    Article  CAS  Google Scholar 

  6. Uzel NG, Teles FR, Teles RP, Song XQ, Torresyap G, Socransky SS et al (2011) Microbial shifts during dental biofilm re-development in the absence of oral hygiene in periodontal health and disease. J Clin Periodontol 38:612–620

    Article  Google Scholar 

  7. Welch JLM, Rossetti BJ, Rieken CW, Dewhirst FE, Borisy GG (2016) Biogeography of a human oral microbiome at the micron scale. Proc Natl Acad Sci U S A 113:E791–E800

    Article  Google Scholar 

  8. Hall MW, Singh N, Ng KF, Lam DK, Goldberg MB, Tenenbaum HC et al (2017) Inter-personal diversity and temporal dynamics of dental, tongue, and salivary microbiota in the healthy oral cavity. npj Biofilms Microbiomes 3:1–7

    Article  Google Scholar 

  9. Bowen WH, Burne RA, Wu H, Koo H (2018) Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol 26:229–242

    Article  CAS  Google Scholar 

  10. Belstrøm D, Sembler-Møller ML, Grande MA, Kirkby N, Cotton SL, Paster BJ et al (2017) Microbial profile comparisons of saliva, pooled and site-specific subgingival samples in periodontitis patients. PLoS One 12:e0182992

    Article  Google Scholar 

  11. Costalonga M, Herzberg MC (2014) The oral microbiome and the immunobiology of periodontal disease and caries. Immunol Lett 162:22–38

    Article  CAS  Google Scholar 

  12. Duran-Pinedo AE, Chen T, Teles R, Starr JR, Wang X, Krishnan K et al (2014) Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis. ISME J 8:1659–1672

    Article  Google Scholar 

  13. Barros SP, Williams R, Offenbacher S, Morelli T (2016) Gingival crevicular fluid as a source of biomarkers for periodontitis. Periodontol 2000 70:53–64

    Article  Google Scholar 

  14. Zekeridou A, Mombelli A, Cancela J, Courvoisier D, Giannopoulou C (2019) Systemic inflammatory burden and local inflammation in periodontitis: what is the link between inflammatory biomarkers in serum and gingival crevicular fluid? Clin Exp Dent Res 5:128–135

    Article  Google Scholar 

  15. Marsh PD (1994) Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res 8:263–271

    Article  CAS  Google Scholar 

  16. Kolenbrander PE, Palmer RJ Jr, Rickard AH, Jakubovics NS, Chalmers NI, Diaz PI (2006) Bacterial interactions and successions during plaque development. Periodontol 2000 42:47–79

    Article  Google Scholar 

  17. Haffajee AD, Teles RP, Patel MR, Song X, Veiga N, Socransky SS (2009) Factors affecting human supragingival biofilm composition. I. Plaque mass. J Periodontal Res 44:511–519

    Article  CAS  Google Scholar 

  18. Hajishengallis G, Lamont RJ, Graves DT (2015) The enduring importance of animal models in understanding periodontal disease. Virulence 6:229–235

    Article  CAS  Google Scholar 

  19. Kim D, Hofstaedter CE, Zhao C, Mattei L, Tanes C, Clarke E et al (2017) Optimizing methods and dodging pitfalls in microbiome research. Microbiome 5:52

    Article  Google Scholar 

  20. Santigli E, Koller M, Klug B (2020) Oral biofilm sampling for microbiome analysis in healthy children. J Vis Exp 130:56320. https://doi.org/10.3791/56320

    Article  Google Scholar 

  21. Akcalı A, Lang NP (2018) Dental calculus: the calcified biofilm and its role in disease development. Periodontol 2000 76:109–115

    Article  Google Scholar 

  22. Luo T, Srinivasan U, Ramadugu K, Shedden KA, Neiswanger K, Trumble E et al (2016) Effects of specimen collection methodologies and storage conditions on the short-term stability of oral microbiome taxonomy. Appl Environ Microbiol 82:5519–5529

    Article  CAS  Google Scholar 

  23. Göhler A, Samietz S, Schmidt CO, Kocher T, Steinmetz I, Holtfreter B (2018) Comparison of oral microbe quantities from tongue samples and subgingival pockets. Int J Dent. https://doi.org/10.1155/2018/2048390

  24. ESNM (2020) Drugs are an important confound in human microbiome studies. https://wwwgutmicrobiotaforhealthcom/drugs-important-confound-human-microbiome-studies/. Accessed 18 June 2020

  25. Gootenberg DB, Turnbaugh PJ (2011) Companion animals symposium: humanized animal models of the microbiome. J Anim Sci 89:1531–1537

    Article  CAS  Google Scholar 

  26. Oz HS, Puleo DA (2011) Animal models for periodontal disease. J Biomed Biotechnol. https://doi.org/10.1155/2011/754857

  27. Sedghi L, Byron C, Jennings R, Chlipala GE, Green SJ, Silo-Suh L (2019) Effect of dietary fiber on the composition of the murine dental microbiome. Dent J (Basel) 7:58

    Article  Google Scholar 

  28. Hernández-Arriaga A, Baumann A, Witte OW, Frahm C, Bergheim I, Camarinha-Silva A (2019) Changes in oral microbial ecology of C57BL/6 mice at different ages associated with sampling methodology. Microorganisms 7:283

    Article  Google Scholar 

  29. Green SJ, Venkatramanan R, Naqib A (2015) Deconstructing the polymerase chain reaction: understanding and correcting bias associated with primer degeneracies and primer-template mismatches. PLoS One. https://doi.org/10.1371/journal.pone.0128122

  30. Naqib A, Poggi S, Wang W, Hyde M, Kunstman K, Green SJ (2018) Making and sequencing heavily multiplexed, high-throughput 16S ribosomal RNA gene amplicon libraries using a flexible, two-stage PCR protocol. In: Raghavachari N, Garcia-Reyero N (eds) Gene expression analysis: methods in molecular biology. Springer, New York

    Google Scholar 

  31. Nelson MC, Morrison HG, Benjamino J, Grim SL, Graf J (2014) Analysis, optimization and verification of Illumina-generated 16S rRNA gene amplicon surveys. PLoS One 9(4):e94249

    Article  Google Scholar 

  32. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  CAS  Google Scholar 

  33. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  Google Scholar 

  34. McDonald D, Clemente JC, Kuczynski J, Rideout JR, Stombaugh J, Wendel D et al (2012) The biological observation matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome. Gigascience 1(1):7. https://doi.org/10.1186/2047-217X-1-7

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  36. McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40:4288–4297

    Article  CAS  Google Scholar 

  37. Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30:614–620

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This protocol was developed and tested at Mercer University (Macon, GA, USA) and was supported by Mercer University grant #213019. Bioinformatics analysis in the project described was piloted at the UIC Research Informatics Core, supported in part by NCATS through Grant UL1TR002003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lea M. Sedghi .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Supplemental Table S1

Taxonomic abundance of dietary groups (DOCX 89 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sedghi, L.M., Green, S.J., Byron, C.D. (2021). Measuring Effects of Dietary Fiber on the Murine Oral Microbiome with Enrichment of 16S rDNA Prior to Amplicon Synthesis. In: Adami, G.R. (eds) The Oral Microbiome. Methods in Molecular Biology, vol 2327. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1518-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1518-8_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1517-1

  • Online ISBN: 978-1-0716-1518-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics