Skip to main content

The Functional Assessment of LRRK2 in Caenorhabditis elegans Mechanosensory Neurons

  • Protocol
  • First Online:
Experimental Models of Parkinson’s Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2322))

Abstract

The nematode Caenorhabditis elegans (C. elegans) is a powerful model organism to systematically analyze the functions of genes of interest in vivo. Especially, C. elegans nervous system is suitable for morphological and functional analyses of neuronal genes due to its optical transparency of the body and the well-established anatomy including neural connections. The C. elegans ortholog of Parkinson’s disease-associated gene LRRK2, named lrk-1, has been shown to play a role in the regulation of axonal morphology in a subset of neurons. Here I describe the detailed methodologies for the assessment of LRK-1/LRRK2 function as well as the analysis of genetic interaction involving lrk-1/LRRK2 by performing live imaging of C. elegans mechanosenrory neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Steger M, Tonelli F, Ito G, Davies P, Trost M, Vetter M, Wachter S, Lorentzen E, Duddy G, Wilson S, Baptista MA, Fiske BK, Fell MJ, Morrow JA, Reith AD, Alessi DR, Mann M (2016) Phosphoproteomics reveals that Parkinson’s disease kinase LRRK2 regulates a subset of Rab GTPases. elife 5:e12813

    Article  Google Scholar 

  2. MacLeod D, Dowman J, Hammond R, Leete T, Inoue K, Abeliovich A (2006) The familial parkinsonism gene LRRK2 regulates neurite process morphology. Neuron 52(4):587–593

    Article  CAS  Google Scholar 

  3. Plowey ED, Cherra SJ 3rd, Liu YJ, Chu CT (2008) Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J Neurochem 105(3):1048–1056

    Article  CAS  Google Scholar 

  4. Chan D, Citro A, Cordy JM, Shen GC, Wolozin B (2011) Rac1 protein rescues neurite retraction caused by G2019S leucine-rich repeat kinase 2 (LRRK2). J Biol Chem 286(18):16140–16149

    Article  CAS  Google Scholar 

  5. Winner B, Melrose HL, Zhao C, Hinkle KM, Yue M, Kent C, Braithwaite AT, Ogholikhan S, Aigner R, Winkler J, Farrer MJ, Gage FH (2011) Adult neurogenesis and neurite outgrowth are impaired in LRRK2 G2019S mice. Neurobiol Dis 41(3):706–716

    Article  CAS  Google Scholar 

  6. MacLeod DA, Rhinn H, Kuwahara T, Zolin A, Di Paolo G, McCabe BD, Marder KS, Honig LS, Clark LN, Small SA, Abeliovich A (2013) RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson’s disease risk. Neuron 77(3):425–439

    Article  CAS  Google Scholar 

  7. Cookson MR (2016) Cellular functions of LRRK2 implicate vesicular trafficking pathways in Parkinson’s disease. Biochem Soc Trans 44(6):1603–1610

    Article  CAS  Google Scholar 

  8. Bonet-Ponce L, Cookson MR (2019) The role of Rab GTPases in the pathobiology of Parkinson’ disease. Curr Opin Cell Biol 59:73–80

    Article  CAS  Google Scholar 

  9. Eguchi T, Kuwahara T, Sakurai M, Komori T, Fujimoto T, Ito G, Yoshimura SI, Harada A, Fukuda M, Koike M, Iwatsubo T (2018) LRRK2 and its substrate Rab GTPases are sequentially targeted onto stressed lysosomes and maintain their homeostasis. Proc Natl Acad Sci U S A 115(39):E9115–E9124

    Article  CAS  Google Scholar 

  10. Kuwahara T, Funakawa K, Komori T, Sakurai M, Yoshii G, Eguchi T, Fukuda M, Iwatsubo T (2020) Roles of lysosomotropic agents on LRRK2 activation and Rab10 phosphorylation. Neurobiol Dis 145:105081

    Article  CAS  Google Scholar 

  11. Kuwahara T, Iwatsubo T (2020) The emerging functions of LRRK2 and Rab GTPases in the endolysosomal system. Front Neurosci 14:227

    Article  Google Scholar 

  12. Tong Y, Yamaguchi H, Giaime E, Boyle S, Kopan R, Kelleher RJ 3rd, Shen J (2010) Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proc Natl Acad Sci U S A 107(21):9879–9884

    Article  CAS  Google Scholar 

  13. Herzig MC, Kolly C, Persohn E, Theil D, Schweizer T, Hafner T, Stemmelen C, Troxler TJ, Schmid P, Danner S, Schnell CR, Mueller M, Kinzel B, Grevot A, Bolognani F, Stirn M, Kuhn RR, Kaupmann K, van der Putten PH, Rovelli G, Shimshek DR (2011) LRRK2 protein levels are determined by kinase function and are crucial for kidney and lung homeostasis in mice. Hum Mol Genet 20(21):4209–4223

    Article  CAS  Google Scholar 

  14. Volta M, Melrose H (2017) LRRK2 mouse models: dissecting the behavior, striatal neurochemistry and neurophysiology of PD pathogenesis. Biochem Soc Trans 45(1):113–122

    Article  CAS  Google Scholar 

  15. Seegobin SP, Heaton GR, Liang D, Choi I, Blanca Ramirez M, Tang B, Yue Z (2020) Progress in LRRK2-associated Parkinson’s disease animal models. Front Neurosci 14:674

    Article  Google Scholar 

  16. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94

    Article  CAS  Google Scholar 

  17. Shaye DD, Greenwald I (2011) OrthoList: a compendium of C. elegans genes with human orthologs. PLoS One 6(5):e20085

    Article  CAS  Google Scholar 

  18. Kuwahara T, Inoue K, D’Agati VD, Fujimoto T, Eguchi T, Saha S, Wolozin B, Iwatsubo T, Abeliovich A (2016) LRRK2 and RAB7L1 coordinately regulate axonal morphology and lysosome integrity in diverse cellular contexts. Sci Rep 6:29945

    Article  CAS  Google Scholar 

  19. Grill B, Bienvenut WV, Brown HM, Ackley BD, Quadroni M, Jin Y (2007) C. elegans RPM-1 regulates axon termination and synaptogenesis through the Rab GEF GLO-4 and the Rab GTPase GLO-1. Neuron 55(4):587–601

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I thank Drs. Asa Abeliovich, Takeshi Iwatsubo and their colleagues for their support during the establishment of the described methods. This work was supported by JSPS KAKENHI Grant number 19K07816.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoki Kuwahara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kuwahara, T. (2021). The Functional Assessment of LRRK2 in Caenorhabditis elegans Mechanosensory Neurons. In: Imai, Y. (eds) Experimental Models of Parkinson’s Disease. Methods in Molecular Biology, vol 2322. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1495-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1495-2_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1494-5

  • Online ISBN: 978-1-0716-1495-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics