Skip to main content

Analysis of Myc Chromatin Binding by Calibrated ChIP-Seq Approach

  • Protocol
  • First Online:
The Myc Gene

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2318))

Abstract

Here, we present a strategy to map and quantify the interactions between Myc and chromatin using a calibrated Myc ChIP-seq approach. We recommend the use of an internal spike-in control for post-sequencing normalization to enable detection of broad changes in Myc binding as can occur under conditions with varied Myc abundance. We also highlight a range of bioinformatic analyses that can dissect the downstream effects of Myc binding. These methods include peak calling, mapping Myc onto an integrated metagenome, juxtaposing ChIP-seq data with matching RNA-seq data, and identifying gene ontologies enriched for genes with high Myc binding. Our aim is to provide a guided strategy, from cell harvest through to bioinformatic analysis, to elucidate the global effects of Myc on transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dang CV (2012) MYC on the path to cancer. Cell 149:22–35. https://doi.org/10.1016/j.cell.2012.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nie Z, Hu G, Wei G et al (2012) c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 151:68–79. https://doi.org/10.1016/j.cell.2012.08.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lin CY, Lovén J, Rahl PB et al (2012) Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151:56–67. https://doi.org/10.1016/j.cell.2012.08.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lorenzin F, Benary U, Baluapuri A et al (2016) Different promoter affinities account for specificity in MYC-dependent gene regulation. Elife 5:e15161. https://doi.org/10.7554/eLife.15161

    Article  PubMed  PubMed Central  Google Scholar 

  5. Levens DL (2013) Cellular MYCro economics: balancing MYC function with MYC expression. Cold Spring Harb Perspect Med 3:a014233. https://doi.org/10.1101/cshperspect.a014233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gabay M, Li Y, Felsher DW (2014) MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb Perspect Med 4:a014241. https://doi.org/10.1101/cshperspect.a014241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lovén J, Orlando DA, Sigova AA et al (2012) Revisiting global gene expression analysis. Cell 151:476–482. https://doi.org/10.1016/j.cell.2012.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fernandez PC, Frank SR, Wang L et al (2003) Genomic targets of the human c-Myc protein. Genes Dev 17:1115–1129. https://doi.org/10.1101/gad.1067003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zeller KI, Zhao X, Lee CWH et al (2006) Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc Natl Acad Sci U S A 103:17834–17839. https://doi.org/10.1073/pnas.0604129103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen K, Hu Z, Xia Z et al (2015) The overlooked fact: fundamental need for spike-in control for virtually all genome-wide analyses. Mol Cell Biol 36:662–667. https://doi.org/10.1128/MCB.00970-14

    Article  CAS  PubMed  Google Scholar 

  11. Baluapuri A, Hofstetter J, Dudvarski Stankovic N et al (2019) MYC recruits SPT5 to RNA polymerase II to promote processive transcription elongation. Mol Cell 74:674–687.e11. https://doi.org/10.1016/j.molcel.2019.02.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zeid R, Lawlor MA, Poon E et al (2018) Enhancer invasion shapes MYCN-dependent transcriptional amplification in neuroblastoma. Nat Genet 50:515–523. https://doi.org/10.1038/s41588-018-0044-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bonhoure N, Bounova G, Bernasconi D et al (2014) Quantifying ChIP-seq data: a spiking method providing an internal reference for sample-to-sample normalization. Genome Res 24:1157–1168. https://doi.org/10.1101/gr.168260.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Orlando DA, Chen MW, Brown VE et al (2014) Quantitative ChIP-Seq normalization reveals global modulation of the epigenome. Cell Rep 9:1163–1170. https://doi.org/10.1016/j.celrep.2014.10.018

    Article  CAS  PubMed  Google Scholar 

  15. Hu Z, Chen K, Xia Z et al (2014) Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging. Genes Dev 28:396–408. https://doi.org/10.1101/gad.233221.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Egan B, Yuan C-C, Craske ML et al (2016) An alternative approach to ChIP-Seq normalization enables detection of genome-wide changes in histone H3 lysine 27 trimethylation upon EZH2 inhibition. PLoS One 11:e0166438. https://doi.org/10.1371/journal.pone.0166438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ewels P, Magnusson M, Lundin S, Käller M (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32:3047–3048. https://doi.org/10.1093/bioinformatics/btw354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:3–12. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  21. Ramírez F, Dündar F, Diehl S et al (2014) deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res 42:W187–W191. https://doi.org/10.1093/nar/gku365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. R Core Team (2017) R: a language and environment for statistical computing

    Google Scholar 

  23. RStudio Team (2015) RStudio: integrated development for R. RStudio, Inc., Boston, MA

    Google Scholar 

  24. Yu G, Wang L-G, Han Y, He Q-Y (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287. https://doi.org/10.1089/omi.2011.0118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carlson M (2019) org.Hs.eg.db: genome wide annotation for human

    Google Scholar 

  26. Feng J, Liu T, Qin B et al (2012) Identifying ChIP-seq enrichment using MACS. Nat Protoc 7:1728–1740. https://doi.org/10.1038/nprot.2012.101

    Article  CAS  PubMed  Google Scholar 

  27. Tange O (2011) GNU parallel – the command-line power tool. USENIX Mag 36:42–47. https://doi.org/10.5281/zenodo.1146014

    Article  Google Scholar 

  28. Stempor P, Ahringer J (2016) SeqPlots – interactive software for exploratory data analyses, pattern discovery and visualization in genomics. Wellcome Open Res 1:14. https://doi.org/10.12688/wellcomeopenres.10004.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Robinson JT, Thorvaldsdóttir H, Winckler W et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26. https://doi.org/10.1038/nbt.1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Baranello L, Wojtowicz D, Cui K et al (2016) RNA polymerase II regulates topoisomerase 1 activity to favor efficient transcription. Cell 165:357–371. https://doi.org/10.1016/j.cell.2016.02.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baranello L, Kouzine F, Sanford S, Levens DL (2016) ChIP bias as a function of cross-linking time. Chromosome Res 24:175–181. https://doi.org/10.1007/s10577-015-9509-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The computations and data storage were enabled by resources in project SNIC 2018/8-390 provided by the Swedish National Infrastructure for Computing (SNIC) at UPPMAX, partially funded by the Swedish Research Council through grant agreement no. 2018-05973.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Baranello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cameron, D.P., Kuzin, V., Baranello, L. (2021). Analysis of Myc Chromatin Binding by Calibrated ChIP-Seq Approach. In: Soucek, L., Whitfield, J. (eds) The Myc Gene. Methods in Molecular Biology, vol 2318. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1476-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1476-1_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1475-4

  • Online ISBN: 978-1-0716-1476-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics