Skip to main content

Genome-Wide Analysis of c-MYC-Regulated mRNAs and miRNAs and c-MYC DNA-Binding by Next-Generation Sequencing

  • Protocol
  • First Online:
The Myc Gene

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2318))

Abstract

The c-MYC oncogene is activated in ~50% of all tumors and its product, the c-MYC transcription factor, regulates numerous processes, which contribute to tumor initiation and progression. Therefore, the genome-wide characterization of c-MYC targets and their role in different tumor entities is a recurrent theme in cancer research. Recently, next-generation sequencing (NGS) has become a powerful tool to analyze mRNA and miRNA expression, as well as DNA binding of proteins in a genome-wide manner with an extremely high resolution and coverage. Since the c-MYC transcription factor regulates mRNA and miRNA expression by binding to specific DNA elements in the vicinity of promoters, NGS can be used to generate integrated representations of c-MYC-mediated regulations of gene transcription and chromatin modifications. Here, we provide protocols and examples of NGS-based analyses of c-MYC-regulated mRNA and miRNA expression, as well as of DNA binding by c-MYC. Furthermore, we describe the validation of single c-MYC targets identified by NGS . Taken together, these approaches allow an accelerated and comprehensive analysis of c-MYC function in numerous cellular contexts. Ultimately, these analyses will further illuminate the role of this important oncogene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dang CV (2012) MYC on the path to cancer. Cell 149(1):22–35

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Meyer N, Penn LZ (2008) Reflecting on 25 years with MYC. Nat Rev Cancer 8(12):976–990

    Article  CAS  PubMed  Google Scholar 

  3. Thorley-Lawson DA, Allday MJ (2008) The curious case of the tumour virus: 50 years of Burkitt's lymphoma. Nat Rev Microbiol 6(12):913–924

    Article  CAS  PubMed  Google Scholar 

  4. Nesbit CE, Tersak JM, Prochownik EV (1999) MYC oncogenes and human neoplastic disease. Oncogene 18(19):3004–3016

    Article  CAS  PubMed  Google Scholar 

  5. Marcu KB, Bossone SA, Patel AJ (1992) Myc function and regulation. Annu Rev Biochem 61:809–860

    Article  CAS  PubMed  Google Scholar 

  6. Chappell SA, LeQuesne JP, Paulin FE et al (2000) A mutation in the c-myc-IRES leads to enhanced internal ribosome entry in multiple myeloma: a novel mechanism of oncogene de-regulation. Oncogene 19(38):4437–4440

    Article  CAS  PubMed  Google Scholar 

  7. Albert T, Urlbauer B, Kohlhuber F et al (1994) Ongoing mutations in the N-terminal domain of c-Myc affect transactivation in Burkitt’s lymphoma cell lines. Oncogene 9(3):759–763

    CAS  PubMed  Google Scholar 

  8. Salghetti SE, Kim SY, Tansey WP (1999) Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc. EMBO J 18(3):717–726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. He TC, Sparks AB, Rago C et al (1998) Identification of c-MYC as a target of the APC pathway. Science 281(5382):1509–1512

    Article  CAS  PubMed  Google Scholar 

  10. van de Wetering M, Sancho E, Verweij C et al (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111(2):241–250

    Article  PubMed  Google Scholar 

  11. Sansom OJ, Reed KR, Hayes AJ et al (2004) Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev 18(12):1385–1390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Murphy DJ, Junttila MR, Pouyet L et al (2008) Distinct thresholds govern Myc’s biological output in vivo. Cancer Cell 14(6):447–457

    Article  CAS  PubMed  Google Scholar 

  13. Hermeking H, Eick D (1994) Mediation of c-Myc-induced apoptosis by p53. Science 265(5181):2091–2093

    Article  CAS  PubMed  Google Scholar 

  14. Vafa O, Wade M, Kern S et al (2002) c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 9(5):1031–1044

    Article  CAS  PubMed  Google Scholar 

  15. Dominguez-Sola D, Ying CY, Grandori C et al (2007) Non-transcriptional control of DNA replication by c-Myc. Nature 448(7152):445–451

    Article  CAS  PubMed  Google Scholar 

  16. Campaner S, Doni M, Verrecchia A et al (2010) Myc, Cdk2 and cellular senescence: old players, new game. Cell Cycle 9(18):3655–3661

    Article  CAS  PubMed  Google Scholar 

  17. Menssen A, Hydbring P, Kapelle K et al (2012) The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop. Proc Natl Acad Sci U S A 109(4):E187–E196

    Article  CAS  PubMed  Google Scholar 

  18. Eilers M, Eisenman RN (2008) Myc’s broad reach. Genes Dev 22(20):2755–2766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Jung P, Hermeking H (2009) The c-MYC-AP4-p21 cascade. Cell Cycle 8(7):982–989

    Article  CAS  PubMed  Google Scholar 

  20. Cowling VH, Cole MD (2006) Mechanism of transcriptional activation by the Myc oncoproteins. Semin Cancer Biol 16(4):242–252

    Article  CAS  PubMed  Google Scholar 

  21. Rahl PB, Lin CY, Seila AC et al (2010) c-Myc regulates transcriptional pause release. Cell 141(3):432–445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Adhikary S, Eilers M (2005) Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6(8):635–645

    Article  CAS  PubMed  Google Scholar 

  23. Ayer DE, Lawrence QA, Eisenman RN (1995) Mad-max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80(5):767–776

    Article  CAS  PubMed  Google Scholar 

  24. Peukert K, Staller P, Schneider A et al (1997) An alternative pathway for gene regulation by Myc. EMBO J 16(18):5672–5686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Herold S, Wanzel M, Beuger V et al (2002) Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol Cell 10(3):509–521

    Article  CAS  PubMed  Google Scholar 

  26. Mao DY, Watson JD, Yan PS et al (2003) Analysis of Myc bound loci identified by CpG island arrays shows that max is essential for Myc-dependent repression. Curr Biol 13(10):882–886

    Article  CAS  PubMed  Google Scholar 

  27. Staller P, Peukert K, Kiermaier A et al (2001) Repression of p15INK4b expression by Myc through association with Miz-1. Nat Cell Biol 3(4):392–399

    Article  CAS  PubMed  Google Scholar 

  28. Smale ST, Baltimore D (1989) The "initiator" as a transcription control element. Cell 57(1):103–113

    Article  CAS  PubMed  Google Scholar 

  29. Patel JH, Loboda AP, Showe MK et al (2004) Analysis of genomic targets reveals complex functions of MYC. Nat Rev Cancer 4(7):562–568

    Article  CAS  PubMed  Google Scholar 

  30. Wu CH, Sahoo D, Arvanitis C et al (2008) Combined analysis of murine and human microarrays and ChIP analysis reveals genes associated with the ability of MYC to maintain tumorigenesis. PLoS Genet 4(6):e1000090

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Zhou L, Picard D, Ra YS et al (2010) Silencing of thrombospondin-1 is critical for myc-induced metastatic phenotypes in medulloblastoma. Cancer Res 70(20):8199–8210

    Article  CAS  PubMed  Google Scholar 

  32. Varlakhanova N, Cotterman R, Bradnam K et al (2011) Myc and Miz-1 have coordinate genomic functions including targeting Hox genes in human embryonic stem cells. Epigenetics Chromatin 4:20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Kidder BL, Yang J, Palmer S (2008) Stat3 and c-Myc genome-wide promoter occupancy in embryonic stem cells. PLoS One 3(12):e3932

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Seitz V, Butzhammer P, Hirsch B et al (2011) Deep sequencing of MYC DNA-binding sites in Burkitt lymphoma. PLoS One 6(11):e26837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Perna D, Faga G, Verrecchia A et al (2012) Genome-wide mapping of Myc binding and gene regulation in serum-stimulated fibroblasts. Oncogene 31(13):1695–1709

    Article  CAS  PubMed  Google Scholar 

  36. Ji H, Wu G, Zhan X et al (2011) Cell-type independent MYC target genes reveal a primordial signature involved in biomass accumulation. PLoS One 6(10):e26057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Li Z, Van Calcar S, Qu C et al (2003) A global transcriptional regulatory role for c-Myc in Burkitt’s lymphoma cells. Proc Natl Acad Sci U S A 100(14):8164–8169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Orian A, Grewal SS, Knoepfler PS et al (2005) Genomic binding and transcriptional regulation by the Drosophila Myc and Mnt transcription factors. Cold Spring Harb Symp Quant Biol 70:299–307

    Article  CAS  PubMed  Google Scholar 

  39. Zeller KI, Zhao X, Lee CW et al (2006) Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc Natl Acad Sci U S A 103(47):17834–17839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Varlakhanova NV, Knoepfler PS (2009) Acting locally and globally: Myc’s ever-expanding roles on chromatin. Cancer Res 69(19):7487–7490

    Article  CAS  PubMed  Google Scholar 

  41. Knoepfler PS (2007) Myc goes global: new tricks for an old oncogene. Cancer Res 67(11):5061–5063

    Article  CAS  PubMed  Google Scholar 

  42. Knoepfler PS, Zhang XY, Cheng PF et al (2006) Myc influences global chromatin structure. EMBO J 25(12):2723–2734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Lin CY, Loven J, Rahl PB et al (2012) Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151(1):56–67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Nie Z, Hu G, Wei G et al (2012) C-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 151(1):68–79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Lorenzin F, Benary U, Baluapuri A et al (2016) Different promoter affinities account for specificity in MYC-dependent gene regulation. elife 5:e15161

    Article  PubMed Central  PubMed  Google Scholar 

  46. Sabo A, Kress TR, Pelizzola M et al (2014) Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. Nature 511(7510):488–492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Walz S, Lorenzin F, Morton J et al (2014) Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature 511(7510):483–487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Zeller KI, Jegga AG, Aronow BJ et al (2003) An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. Genome Biol 4(10):R69

    Article  PubMed Central  PubMed  Google Scholar 

  49. Lujambio A, Lowe SW (2012) The microcosmos of cancer. Nature 482(7385):347–355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Bui TV, Mendell JT (2010) Myc: maestro of MicroRNAs. Genes Cancer 1(6):568–575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Frenzel A, Loven J, Henriksson MA (2010) Targeting MYC-regulated miRNAs to combat cancer. Genes Cancer 1(6):660–667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Robertus JL, Kluiver J, Weggemans C et al (2010) MiRNA profiling in B non-Hodgkin lymphoma: a MYC-related miRNA profile characterizes Burkitt lymphoma. Br J Haematol 149(6):896–899

    Article  CAS  PubMed  Google Scholar 

  53. Kim JW, Mori S, Nevins JR (2010) Myc-induced microRNAs integrate Myc-mediated cell proliferation and cell fate. Cancer Res 70(12):4820–4828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Mu P, Han YC, Betel D et al (2009) Genetic dissection of the miR-17~92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev 23(24):2806–2811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Lin CH, Jackson AL, Guo J et al (2009) Myc-regulated microRNAs attenuate embryonic stem cell differentiation. EMBO J 28(20):3157–3170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Watson JD, Oster SK, Shago M et al (2002) Identifying genes regulated in a Myc-dependent manner. J Biol Chem 277(40):36921–36930

    Article  CAS  PubMed  Google Scholar 

  57. Eilers M, Picard D, Yamamoto KR et al (1989) Chimaeras of myc oncoprotein and steroid receptors cause hormone-dependent transformation of cells. Nature 340(6228):66–68

    Article  CAS  PubMed  Google Scholar 

  58. Jung P, Menssen A, Mayr D et al (2008) AP4 encodes a c-MYC-inducible repressor of p21. Proc Natl Acad Sci U S A 105(39):15046–15051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Mateyak MK, Obaya AJ, Adachi S et al (1997) Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ 8(10):1039–1048

    CAS  PubMed  Google Scholar 

  60. Lachmann A, Torre D, Keenan AB et al (2018) Massive mining of publicly available RNA-seq data from human and mouse. Nat Commun 9(1):1366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Kodama Y, Shumway M, Leinonen R et al (2012) The sequence read archive: explosive growth of sequencing data. Nucleic Acids Res 40(Database issue):D54–D56

    Article  CAS  PubMed  Google Scholar 

  62. Leinonen R, Sugawara H, Shumway M et al (2011) The sequence read archive. Nucleic Acids Res 39(Database issue):D19–D21

    Article  CAS  PubMed  Google Scholar 

  63. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):333–351

    Article  CAS  PubMed  Google Scholar 

  64. Stark R, Grzelak M, Hadfield J (2019) RNA sequencing: the teenage years. Nat Rev Genet 20(11):631–656

    Article  CAS  PubMed  Google Scholar 

  65. Metzker ML (2010) Sequencing technologies - the next generation. Nat Rev Genet 11(1):31–46

    Article  CAS  PubMed  Google Scholar 

  66. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Han H, Nutiu R, Moffat J et al (2011) SnapShot: high-throughput sequencing applications. Cell 146(6):1044, 1044.e1-2

    Article  CAS  PubMed  Google Scholar 

  68. Conesa A, Madrigal P, Tarazona S et al (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Chen C, Ridzon DA, Broomer AJ et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Menssen A, Hermeking H (2002) Characterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes. Proc Natl Acad Sci U S A 99(9):6274–6279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Alexandrow MG, Moses HL (1995) Transforming growth factor beta and cell cycle regulation. Cancer Res 55(7):1452–1457

    CAS  PubMed  Google Scholar 

  72. Menssen A, Epanchintsev A, Lodygin D et al (2007) c-MYC delays prometaphase by direct transactivation of MAD2 and BubR1: identification of mechanisms underlying c-MYC-induced DNA damage and chromosomal instability. Cell Cycle 6(3):339–352

    Article  CAS  PubMed  Google Scholar 

  73. Barfeld SJ, Urbanucci A, Itkonen HM et al (2017) C-Myc antagonises the transcriptional activity of the androgen receptor in prostate cancer affecting key gene networks. EBioMedicine 18:83–93

    Article  PubMed Central  PubMed  Google Scholar 

  74. Thomas LR, Adams CM, Wang J et al (2019) Interaction of the oncoprotein transcription factor MYC with its chromatin cofactor WDR5 is essential for tumor maintenance. Proc Natl Acad Sci U S A 116(50):25260–25268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Fernandez PC, Frank SR, Wang L et al (2003) Genomic targets of the human c-Myc protein. Genes Dev 17(9):1115–1129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Martinato F, Cesaroni M, Amati B et al (2008) Analysis of Myc-induced histone modifications on target chromatin. PLoS One 3(11):e3650

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10(10):669–680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Valouev A, Johnson DS, Sundquist A et al (2008) Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat Methods 5(9):829–834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Kim D, Pertea G, Trapnell C et al (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14(4):R36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21

    Article  CAS  PubMed  Google Scholar 

  83. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Ziemann M, Kaspi A, El-Osta A (2016) Evaluation of microRNA alignment techniques. RNA 22(8):1120–1138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Hackenberg M, Sturm M, Langenberger D et al (2009) miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res 37(Web Server issue):W68–W76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Hackenberg M, Rodriguez-Ezpeleta N, Aransay AM (2011) miRanalyzer: an update on the detection and analysis of microRNAs in high-throughput sequencing experiments. Nucleic Acids Res 39(Web Server issue):W132–W138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Friedlander MR, Mackowiak SD, Li N et al (2012) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40(1):37–52

    Article  CAS  PubMed  Google Scholar 

  88. Lu Y, Baras AS, Halushka MK (2018) miRge 2.0 for comprehensive analysis of microRNA sequencing data. BMC Bioinformatics 19(1):275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Fejes AP, Robertson G, Bilenky M et al (2008) FindPeaks 3.1: a tool for identifying areas of enrichment from massively parallel short-read sequencing technology. Bioinformatics 24(15):1729–1730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Feng J, Liu T, Qin B et al (2012) Identifying ChIP-seq enrichment using MACS. Nat Protoc 7(9):1728–1740

    Article  CAS  PubMed  Google Scholar 

  91. Zhu JY, Sun Y, Wang ZY (2012) Genome-wide identification of transcription factor-binding sites in plants using chromatin immunoprecipitation followed by microarray (ChIP-chip) or sequencing (ChIP-seq). Methods Mol Biol 876:173–188

    Article  CAS  PubMed  Google Scholar 

  92. Furey TS (2012) ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet 13(12):840–852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Nakato R, Shirahige K (2017) Recent advances in ChIP-seq analysis: from quality management to whole-genome annotation. Brief Bioinform 18(2):279–290

    CAS  PubMed  Google Scholar 

  94. Bailey TL, Boden M, Buske FA et al (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37(Web Server issue):W202–W208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Cantacessi C, Jex AR, Hall RS et al (2010) A practical, bioinformatic workflow system for large data sets generated by next-generation sequencing. Nucleic Acids Res 38(17):e171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Pepke S, Wold B, Mortazavi A (2009) Computation for ChIP-seq and RNA-seq studies. Nat Methods 6(11 Suppl):S22–S32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Anders S, Pyl PT, Huber W (2015) HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169

    Article  CAS  PubMed  Google Scholar 

  98. Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930

    Article  CAS  PubMed  Google Scholar 

  99. Law CW, Chen Y, Shi W et al (2014) Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15(2):R29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    Article  CAS  PubMed  Google Scholar 

  103. Trapnell C, Roberts A, Goff L et al (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Goecks J, Nekrutenko A, Taylor J (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11(8):R86

    Article  PubMed Central  PubMed  Google Scholar 

  105. Friedman RC, Farh KK, Burge CB et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Agarwal V, Bell GW, Nam JW et al (2015) Predicting effective microRNA target sites in mammalian mRNAs. elife 4:e05005

    Article  PubMed Central  Google Scholar 

  107. Anders G, Mackowiak SD, Jens M et al (2012) doRiNA: a database of RNA interactions in post-transcriptional regulation. Nucleic Acids Res 40(Database issue):D180–D186

    Article  CAS  PubMed  Google Scholar 

  108. Betel D, Wilson M, Gabow A et al (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36(Database issue):D149–D153

    CAS  PubMed  Google Scholar 

  109. Dweep H, Gretz N (2015) miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods 12(8):697

    Article  CAS  PubMed  Google Scholar 

  110. Liberzon A, Birger C, Thorvaldsdottir H et al (2015) The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst 1(6):417–425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Liberzon A (2014) A description of the molecular signatures database (MSigDB) web site. Methods Mol Biol 1150:153–160

    Article  CAS  PubMed  Google Scholar 

  112. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Frank SR, Schroeder M, Fernandez P et al (2001) Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev 15(16):2069–2082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Pfaffl MW (2010) The ongoing evolution of qPCR. Methods 50(4):215–216

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the Hermeking lab is supported by the German-Israeli-Science-Foundation (GIF), the Wilhelm-Sander-Stiftung, the Else-Kröner-Fresenius-Stiftung, the Rudolf-Bartling-Stiftung, the Deutsche Krebshilfe, the Deutsches Konsortium für translationale Krebsforschung (DKTK), and the Deutsche Forschungsgemeinschaft (DFG).

Footnotes: HiSeq (1), Illumina (2), MiSeq (3) and TruSeq (4) are registered trademarks of Illumina Inc. San Diego, CA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Hermeking .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jackstadt, R., Kaller, M., Menssen, A., Hermeking, H. (2021). Genome-Wide Analysis of c-MYC-Regulated mRNAs and miRNAs and c-MYC DNA-Binding by Next-Generation Sequencing. In: Soucek, L., Whitfield, J. (eds) The Myc Gene. Methods in Molecular Biology, vol 2318. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1476-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1476-1_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1475-4

  • Online ISBN: 978-1-0716-1476-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics