Skip to main content

Chromogenic In Situ Hybridization (CISH) as a Method for Detection of C-Myc Amplification in Formalin-Fixed Paraffin-Embedded Tumor Tissue: An Update

  • Protocol
  • First Online:
The Myc Gene

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2318))

Abstract

In situ hybridization (ISH) allows evaluation of genetic abnormalities, such as changes in chromosome number, chromosome translocations, or gene amplifications, by hybridization of tagged DNA (or RNA) probes with complementary DNA (or RNA) sequences in interphase nuclei of target tissue. However, chromogenic in situ hybridization (CISH) is also applicable to formalin-fixed, paraffin-embedded (FFPE ) tissues, besides metaphase chromosome spreads. CISH is similar to fluorescent in situ hybridization (FISH) regarding pretreatments and hybridization protocols but differs in the way of visualization. Indeed, CISH signal detection is similar to that used in immunohistochemistry, making use of a peroxidase-based chromogenic reaction instead of fluorescent dyes. In particular, tagged DNA probes are indirectly detected using an enzyme-conjugated antibody targeting the tags. The enzymatic reaction of the chromogenic substrate leads to the formation of strong permanent brown signals that can be visualized by bright-field microscopy at 40× magnification. The advantage of CISH is that it allows the simultaneous observation of gene amplification and tissue morphology, and the slides can be stored for a long time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evan GI, Littlewood TD (1993) The role of c-myc in cell growth. Curr Opin Genet Dev 3:44–49. https://doi.org/10.1016/S0959-437X(05)80339-9

    Article  CAS  PubMed  Google Scholar 

  2. Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C (2013) Emerging landscape of oncogenic signatures across human cancers. Nat Genet 45:1127–1133. https://doi.org/10.1038/ng.2762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang Y, Xu H, Frishman D (2016) Genomic determinants of somatic copy number alterations across human cancers. Hum Mol Genet 25:1019–1030. https://doi.org/10.1093/hmg/ddv623

    Article  CAS  PubMed  Google Scholar 

  4. Deming SL, Nass SJ, Dickson RB, Trock BJ (2000) C-myc amplification in breast cancer: a meta-analysis of its occurrence and prognostic relevance. Br J Cancer 83:1688–1695

    Article  CAS  Google Scholar 

  5. Masramon L, Arribas R, Tartola S, Perucho M, Peinado MA (1998) Moderate amplifications of the c-myc gene correlate with molecular and clinicopathological parameters in colorectal cancer. Br J Cancer 77:2349–2356

    Article  CAS  Google Scholar 

  6. Augenlicht LH, Wadler S, Corner G, Richards C, Ryan L, Multani AS et al (1997) Low-level c-myc amplification in human colonic carcinoma cell lines and tumors: a frequent, p53-independent mutation associated with improved outcome in a randomized multi-institutional trial. Cancer Res 57:1769

    CAS  PubMed  Google Scholar 

  7. Baker VV, Borst MP, Dixon D, Hatch KD, Shingleton HM, Miller D (1990) C-myc amplification in ovarian cancer. Gynecol Oncol 38:340–342

    Article  CAS  Google Scholar 

  8. Mitani S, Kamata H, Fujiwara M, Aoki N, Tango T, Fukuchi K, Oka T (2001) Analysis of c-myc DNA amplification in non-small cell lung carcinoma in comparison with small cell lung carcinoma using polymerase chain reaction. Clin Exp Med 1:105–111

    Article  CAS  Google Scholar 

  9. Rodriguez-Pinilla MS, Jones RL, Lambros MBK, Arriola E, Savage K, James M et al (2007) MYC amplification in breast cancer: a chromogenic in situ hybridisation study. Clin Pathol 60:1017–1023

    Article  Google Scholar 

  10. Todorović-Raković N, Nešković-Konstantinović Z, Nikolić-Vukosavljević D (2011) C-myc as a predictive marker for chemotherapy in metastatic breast cancer. Clin Exp Med 12(4):217–223. https://doi.org/10.1007/s10238-011-0169-y

    Article  CAS  PubMed  Google Scholar 

  11. Hsi B-L, Xiao S, Fletcher JA (2003) Chromogenic in situ hybridization and FISH in pathology. Methods Mol Biol 204:343–351

    Google Scholar 

  12. Madrid MA, Lo RW (2004) Chromogenic in situ hybridization (CISH): a novel alternative in screening archival breast cancer tissue samples for HER-2/neu status. Breast Cancer Res 6:R593–R600

    Article  CAS  Google Scholar 

  13. Rummukainen JK, Salminen T, Lundin J et al (2001) Amplification of c-myc oncogene by chromogenic and fluorescence in situ hybridization in archival breast cancer tissue array samples. Lab Investig 811:545–1551

    Google Scholar 

  14. Atabati H, Raoofi A, Amini A, Farahani RM (2018) Evaluating HER2 gene amplification using chromogenic in situ hybridization (CISH) method in comparison to immunohistochemistry method in breast carcinoma. Open Access Maced J Med Sci 6:1977–1981. https://doi.org/10.3889/oamjms.2018.455. eCollection 2018

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ali AHM, Yahya AQ, Mohammed HL (2019) Chromogenic in situ hybridization technique versus immunohistochemistry in assessment of HER2/neu status in 448 Iraqi patients with invasive breast carcinoma. Open Access Maced J Med Sci 7:1917–1925. https://doi.org/10.3889/oamjms.2019.342. eCollection 2019

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sarli A, Mozdarani H, Rakhshani N, Mozdarani S (2019) Relationship study of the verified human epidermal growth factor receptor 2 amplification with other tumor markers and clinicohistopathological characteristics in patients with invasive breast cancer, using chromogenic in situ hybridization. Cell J 21:322–330. https://doi.org/10.22074/cellj.2019.6219

    Article  PubMed  PubMed Central  Google Scholar 

  17. Khaleghian M, Shakoori A, Razavi AE, Azimi C (2015) Relationship of amplification and expression of the C-MYC gene with survival among gastric cancer patients. Asian Pac J Cancer Prev 16:7061–7069

    Article  Google Scholar 

  18. Khaleghian M, Jahanzad I, Shakoori A, Emami Razavi A, Azimi C (2016) Association between amplification and expression of C-MYC gene and clinicopathological characteristics of stomach cancer. Iran Red Crescent Med J 18:e21221. https://doi.org/10.5812/ircmj.21221. eCollection 2016 Feb

    Article  PubMed  PubMed Central  Google Scholar 

  19. Khaleghian M, Jahanzad I, Shakoori A, Ardalan FA, Azimi C (2015) Study of C-MYC amplification and expression in Iranian gastric cancer samples using CISH and IHC methods. Adv Biomed Res 4:116. https://doi.org/10.4103/2277-9175.157841. eCollection 2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nitta H, Kelly B (2019) Chromogenic tissue-based methods for detection of gene amplifications (or rearrangements) combined with protein overexpression in clinical samples. Methods Mol Biol 1953:301–314. https://doi.org/10.1007/978-1-4939-9145-7_19

    Article  CAS  PubMed  Google Scholar 

  21. Monteiro RL, Damaceno DS, Kimura LM, Cirqueira CS, Guerra JM, Araújo LJT (2019) Validation of chromogenic in situ hybridization reactions for DNA and RNA detection in formalin-fixed paraffin-embedded tissue. J Bras Patol Med Lab 55. https://doi.org/10.5935/1676-2444.20190008

  22. Li X, Chew S, Chay W et al (2013) Optimizing Ventana chromogenic dual in-situ hybridization for mucinous epithelial ovarian cancer. BMC Res Notes 6:562. https://doi.org/10.1186/1756-0500-6-562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nakamura N, Fujii T, Soejima Y, Sawabe M (2019) Optimization of trypsin treatment condition utilizing immunohistochemistry for chromogenic in situ hybridization. Pathol Int. https://doi.org/10.1111/pin.12855

  24. Leong S-Y, Haffajee Z (2011) Microwaves for chromogenic in situ hybridization. Methods Mol Biol 724:79–89. https://doi.org/10.1007/978-1-61779-055-3_5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the research Grant No. 175068 from the Fund for basic science of the Ministry of Education and Science of the Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataša Todorović-Raković .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Todorović-Raković, N. (2021). Chromogenic In Situ Hybridization (CISH) as a Method for Detection of C-Myc Amplification in Formalin-Fixed Paraffin-Embedded Tumor Tissue: An Update. In: Soucek, L., Whitfield, J. (eds) The Myc Gene. Methods in Molecular Biology, vol 2318. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1476-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1476-1_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1475-4

  • Online ISBN: 978-1-0716-1476-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics