Skip to main content

Generation of a Tetracycline Regulated Mouse Model of MYC-Induced T-Cell Acute Lymphoblastic Leukemia

  • Protocol
  • First Online:
The Myc Gene

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2318))

Abstract

The tetracycline regulatory system provides a tractable strategy to interrogate the role of oncogenes in the initiation, maintenance, and regression of tumors through both spatial and temporal control of expression. This approach has several potential advantages over conventional methods to generate genetically engineered mouse models. First, continuous constitutive overexpression of an oncogene can be lethal to the host impeding further study. Second, constitutive overexpression fails to model adult onset of disease. Third, constitutive deletion does not permit, whereas conditional overexpression of an oncogene enables the study of the consequences of restoring expression of an oncogene back to endogenous levels. Fourth, the conditional activation of oncogenes enables examination of specific and/or developmental state-specific consequences.

Hence, by allowing precise control of when and where a gene is expressed, the tetracycline regulatory system provides an ideal approach for the study of putative oncogenes in the initiation as well as the maintenance of tumorigenesis and the examination of the mechanisms of oncogene addiction. In this protocol, we describe the methods involved in the development of a conditional mouse model of MYC-induced T-cell acute lymphoblastic leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Politi K, Pao W (2011) How genetically engineered mouse tumor models provide insights into human cancers. J Clin Oncol 29:2273–2281

    Article  CAS  PubMed  Google Scholar 

  2. Sharpless NE, DePinho RA (2006) The mighty mouse: genetically engineered mouse models in cancer drug development. Nat Rev Drug Discov 5:741–754

    Article  CAS  Google Scholar 

  3. Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89:5547–5551

    Article  CAS  PubMed  Google Scholar 

  4. Utomo ARH, Nikitin AY, Lee WH (1999) Temporal, spatial of and cell type-specified control of cre-mediated DNA recombination in transgenic mice. Nat Biotechnol 17:1091–1096

    Article  CAS  Google Scholar 

  5. No D, Yao TP, Evans RM (1996) Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc Natl Acad Sci U S A 93:3346–3351

    Article  CAS  PubMed  Google Scholar 

  6. Littlewood TD, Hancock DC, Danielian PS, Parker MG, Evan GI (1995) A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res 23:1686–1690

    Article  CAS  PubMed  Google Scholar 

  7. Cronin CA, Gluba W, Scrable H (2001) The lac operator-repressor system is functional in the mouse. Genes Dev 15:1506–1517

    Article  CAS  PubMed  Google Scholar 

  8. Zhou X, Vink M, Klaver B, Berkhout B, Das AT (2006) Optimization of the Tet-On system for regulated gene expression through viral evolution. Gene Ther 13:1382–1390

    Article  CAS  Google Scholar 

  9. Felsher DW, Bishop JM (1999) Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell 4:199–207

    Article  CAS  Google Scholar 

  10. Cho A, Haruyama N, Kulkarni AB (2009) Generation of transgenic mice. Curr Protoc Cell Biol. Chapter 19, Unit 19.11

    Google Scholar 

  11. Hann SR, Eisenman RN (1984) Proteins encoded by the human c-myc oncogene: differential expression in neoplastic cells. Mol Cell Biol 4:2486–2497

    Article  CAS  PubMed  Google Scholar 

  12. Jinadasa R, Balmus G, Gerwitz L, Roden J, Weiss R, Duhamel G. Derivation of thymic lymphoma t-cell lines from atm-/- and p53-/- mice. J Vis Exp. 2011;(50)

    Google Scholar 

  13. Shachaf CM, Gentles AJ, Elchuri S, Sahoo D, Soen Y, Sharpe O, Perez OD, Chang M, Mitchel D, Robinson WH, Dill D, Nolan GP, Plevritis SK, Felsher DW (2008) Genomic and proteomic analysis reveals a threshold level of MYC required for tumor maintenance. Cancer Res 68:5132–5142

    Article  CAS  PubMed  Google Scholar 

  14. Li Y, Choi PS, Casey SC, Dill DL, Felsher DW (2014) MYC through miR-17-92 suppresses specific target genes to maintain survival, autonomous proliferation, and a neoplastic state. Cancer Cell 26:262–272

    Article  CAS  PubMed  Google Scholar 

  15. Gouw AM, Margulis K, Liu NS, Raman SJ, Mancuso A, Toal GG, Tong L, Mosley A, Hsieh AL, Sullivan DK, Stine ZE, Altman BJ, Schulze A, Dang CV, Zare RN, Felsher DW (2019) The MYC oncogene cooperates with sterol-regulated element-binding protein to regulate lipogenesis essential for neoplastic growth. Cell Metab 30:556–572

    Article  CAS  PubMed  Google Scholar 

  16. Casey SC, Tong L, Li Y, Do R, Walz S, Fitzgerald KN, Gouw AM, Baylot V, Gütgemann I, Eilers M, Felsher DW (2016) MYC regulates the antitumor immune response through CD47 and PD-L1. Science 352:227–231

    Article  CAS  PubMed  Google Scholar 

  17. Swaminathan S, Heftdal L, Liefwalker D, Dhanasekaran R, Deutzmann A, Horton C, Mosley A, Liebersbach M, Maecker HT, Felsher DW (2018) MYC functions as a switch for natural killer cell-mediated immune surveillance of lymphoid malignancies. bioRxiv 503086. https://doi.org/10.1101/503086

  18. Dhanasekaran R, Baylot V, Kim M, Kuruvilla S, Bellovin DI, Adeniji N, Rajan Kd A, Lai I, Gabay M, Hu T, Barbhuiya MA, Gentles AJ, Kannan K, Tran PT, Felsher DW (2020) MYC and Twist1 cooperate to drive metastasis by eliciting crosstalk between cancer and innate immunity. Elife 9:e50731

    Article  CAS  PubMed  Google Scholar 

  19. Shachaf CM, Kopelman AM, Arvanitis C, Karlsson A, Beer S, Mandl S, Bachmann MH, Borowsky AD, Ruebner B, Cardiff RD, Yang Q, Bishop JM, Contag CH, Felsher DW (2004) MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431:1112–1117

    Article  CAS  Google Scholar 

  20. Jain M, Arvanitis C, Chu K, Dewey W, Leonhardt E, Trinh M, Sundberg CD, Bishop JM, Felsher DW (2002) Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 297:102–104

    Article  CAS  Google Scholar 

  21. Kemp DJ, Harris AW, Cory S, Adams JM (1980) Expression of the immunoglobulin Cμ gene in mouse T and B lymphoid and myeloid cell lines. Proc Natl Acad Sci U S A 77:2876–2880

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Peter Choi and members of the Felsher laboratory for the advice. The work described in this chapter was supported by the following grants to Dr. Dean Felsher: Burroughs Welcome Fund Career Award, the Damon Runyon Foundation Lilly Clinical Investigator Award, NIH RO1 grant number CA 089305, 105102, 208735, 184384, and U01CA188383, National Cancer Institute’s In-vivo Cellular and Molecular Imaging Center grant number CA 114747, Integrative Cancer Biology Program grant number CA 112973, NIH/NCI PO1 grant number CA034233, the Leukaemia and Lymphoma Society Translational Research grant number R6223-07. Dr. Wadie Mahauad-Fernandez is supported as a fellow of the Translational Research and Applied Medicine (TRAM) program at Stanford University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean W. Felsher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mahauad-Fernandez, W.D., Rakhra, K., Felsher, D.W. (2021). Generation of a Tetracycline Regulated Mouse Model of MYC-Induced T-Cell Acute Lymphoblastic Leukemia. In: Soucek, L., Whitfield, J. (eds) The Myc Gene. Methods in Molecular Biology, vol 2318. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1476-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1476-1_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1475-4

  • Online ISBN: 978-1-0716-1476-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics