Skip to main content

Using Flow Cytometry to Study Myc’s Role in Shaping the Tumor Immune Microenvironment

  • Protocol
  • First Online:
The Myc Gene

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2318))

  • 1098 Accesses

Abstract

Myc is deregulated in most—if not all—cancers, and it not only promotes tumor progression by inducing cell proliferation but is also responsible for tumor immune evasion. In a nutshell, MYC promotes the development of tumor-associated macrophages, impairs the cellular response to interferons, induces the expression of immunosuppressive molecules, and excludes tumor infiltrating lymphocytes (TILs) from the tumor site. Based on the insights into the role of MYC in promoting and regulating immune evasion by cancer cells, it is of special interest to study the different immune cell populations infiltrating the tumors. MYC inhibition has emerged as a potential new strategy for the treatment of cancer, directly inhibiting tumor progression while also counteracting the immunosuppressive tumor microenvironment, allowing an optimal anti-tumor immune response. Hence, this chapter describes a flow cytometry-based method to study the different immune cell subsets infiltrating the tumor by combining surface, cytoplasmic, and nuclear multicolor protein stainings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ehrlich P (1909) Ueber den jetzigen Stand der Karzinomforschung. Ned Tijdschr Geneeskd 5:273–290

    Google Scholar 

  2. Thomas L (1959) In: Lawrence HS (ed) Discussion of cellular and humoral aspects of hypersensitive states. Hoeber-Harper, New York

    Google Scholar 

  3. Burnet M (1957) Cancer: a biological approach. I. The processes of control. Br Med J 1:779–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  PubMed  Google Scholar 

  5. Fouad YA, Aanei C (2017) Revisiting the hallmarks of cancer. Am J Cancer Res 7:1016–1036

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Dang CV (2012) MYC on the path to cancer. Cell 149:22–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dang CV, O’Donnell KA, Zeller KI et al (2006) The c-Myc target gene network. Semin Cancer Biol 16:253–264

    Article  CAS  PubMed  Google Scholar 

  8. Lavigne P, Crump MP, Gagne SM et al (1998) Insights into the mechanism of heterodimerization from the 1H-NMR solution structure of the c-Myc-Max heterodimeric leucine zipper. J Mol Biol 281:165–181

    Article  CAS  PubMed  Google Scholar 

  9. McDuff FO, Naud JF, Montagne M et al (2009) The Max homodimeric b-HLH-LZ significantly interferes with the specific heterodimerization between the c-Myc and Max b-HLH-LZ in absence of DNA: a quantitative analysis. J Mol Recognit 22:261–269

    Article  CAS  PubMed  Google Scholar 

  10. Dang CV (2013) MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb Perspect Med 3

    Google Scholar 

  11. Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411:342–348

    Article  CAS  PubMed  Google Scholar 

  12. Meyer N, Penn LZ (2008) Reflecting on 25 years with MYC. Nat Rev Cancer 8:976–990

    Article  CAS  PubMed  Google Scholar 

  13. Pello OM (2016) Macrophages and c-Myc cross paths. Onco Targets Ther 5:e1151991

    Google Scholar 

  14. Pello OM, De Pizzol M, Mirolo M et al (2012) Role of c-MYC in alternative activation of human macrophages and tumor-associated macrophage biology. Blood 119:411–421

    Article  PubMed  Google Scholar 

  15. Schlee M, Holzel M, Bernard S et al (2007) C-myc activation impairs the NF-kappaB and the interferon response: implications for the pathogenesis of Burkitt’s lymphoma. Int J Cancer 120:1387–1395

    Article  CAS  PubMed  Google Scholar 

  16. Tulley PN, Neale M, Jackson D et al (2004) The relation between c-myc expression and interferon sensitivity in uveal melanoma. Br J Ophthalmol 88:1563–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Muthalagu N, Monteverde T, Raffo-Iraolagoitia X et al (2020) Repression of the type I interferon pathway underlies MYC- and KRAS-dependent evasion of NK and B cells in pancreatic ductal adenocarcinoma. Cancer Discov 10:872–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim T, Hong S, Lin Y et al (2016) Transcriptional repression of IRF7 by MYC is critical for type I interferon production in human pDC. J Immunol 197:3348–3359

    Article  CAS  PubMed  Google Scholar 

  19. Casey SC, Tong L, Li Y et al (2016) MYC regulates the antitumor immune response through CD47 and PD-L1. Science 352:227–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Topper MJ, Vaz M, Chiappinelli KB et al (2017) Epigenetic therapy ties MYC depletion to reversing immune evasion and treating lung cancer. Cell 171:1284–1300.e1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kortlever RM, Sodir NM, Wilson CH et al (2017) Myc cooperates with Ras by programming inflammation and immune suppression. Cell 171:1301–1315.e1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Beaulieu M-E, Jauset T, Massó-Vallés D et al (2019) Intrinsic cell-penetrating activity propels Omomyc from proof of concept to viable anti-Myc therapy. Sci Transl Med 11(484):eaar5012

    Article  PubMed  PubMed Central  Google Scholar 

  23. Han H, Jain AD, Truica MI et al (2019) Small-molecule MYC inhibitors suppress tumor growth and enhance immunotherapy. Cancer Cell 36:483–497.e415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Whitfield JR, Beaulieu ME, Soucek L (2017) Strategies to inhibit Myc and their clinical applicability. Front Cell Dev Biol 5:10

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gros A, Robbins PF, Yao X et al (2014) PD-1 identifies the patient-specific CD8(+) tumor-reactive repertoire infiltrating human tumors. J Clin Invest 124:2246–2259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Simon S, Labarriere N (2017) PD-1 expression on tumor-specific T cells: friend or foe for immunotherapy? Onco Targets Ther 7:e1364828

    Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. Jonathan Whitfield for critical reading and editing assistance. This work was supported by the Catalan Agency for Trade and Investment (ACCIÓ; grant no. PAT15-0005), the European Research Council (CoG grant no. 617473), the BBVA Foundation and by Peptomyc S.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sílvia Casacuberta-Serra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Casacuberta-Serra, S. (2021). Using Flow Cytometry to Study Myc’s Role in Shaping the Tumor Immune Microenvironment. In: Soucek, L., Whitfield, J. (eds) The Myc Gene. Methods in Molecular Biology, vol 2318. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1476-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1476-1_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1475-4

  • Online ISBN: 978-1-0716-1476-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics