Abstract
In this chapter, we provide a practical guide on how to plan, execute, and interpret atomistic and coarse-grained molecular dynamics (MD) simulations of lipid-modified proteins in model membranes. After outlining some key practical considerations when planning such simulations, we survey resources and techniques to obtain force field parameters for nonconventional amino acids, such as posttranslationally lipid-modified amino acids that are unique to this class of proteins. We then describe the protocols to build, setup, and run the simulations, followed by a brief comment on the analysis and interpretation of the simulations. Finally, examples of insights that could be gained from atomistic and coarse-grained MD simulations of lipidated proteins will be provided, using RAS proteins as illustrative examples. Throughout the chapter, we highlight the main advantages and limitations of simulating RAS and related lipid-modified G-proteins in biomimetic membranes.
Key words
- Lipidated proteins
- Membrane
- Lipid bilayer
- Molecular dynamics simulation
- G-proteins
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in cancer. Cancer Res 72(10):2457–2467. https://doi.org/10.1158/0008-5472.CAN-11-2612
Gorfe AA, Cho KJ (2019) Approaches to inhibiting oncogenic K-Ras. Small GTPases 12(2):96-105. https://doi.org/10.1080/21541248.2019.1655883
Prakash P, Gorfe AA (2013) Lessons from computer simulations of Ras proteins in solution and in membrane. Biochim Biophys Acta 1830(11):5211–5218. https://doi.org/10.1016/j.bbagen.2013.07.024
Parker JA, Mattos C (2018) The K-Ras, N-Ras, and H-Ras isoforms: unique conformational preferences and implications for targeting oncogenic mutants. Cold Spring Harb Perspect Med 8(8):a031427. https://doi.org/10.1101/cshperspect.a031427
Zhou Y, Prakash P, Gorfe AA, Hancock JF (2018) Ras and the plasma membrane: a complicated relationship. Cold Spring Harb Perspect Med 8(10):a031831. https://doi.org/10.1101/cshperspect.a031831
Grant BJ, Lukman S, Hocker HJ, Sayyah J, Brown JH, McCammon JA, Gorfe AA (2011) Novel allosteric sites on Ras for lead generation. PLoS One 6(10):e25711. https://doi.org/10.1371/journal.pone.0025711
Grant BJ, McCammon JA, Gorfe AA (2010) Conformational selection in G-proteins: lessons from Ras and Rho. Biophys J 99(11):L87–L89. https://doi.org/10.1016/j.bpj.2010.10.020
Grant BJ, Gorfe AA, McCammon JA (2009) Ras conformational switching: simulating nucleotide-dependent conformational transitions with accelerated molecular dynamics. PLoS Comput Biol 5(3):e1000325. https://doi.org/10.1371/journal.pcbi.1000325
Gorfe AA, Grant BJ, McCammon JA (2008) Mapping the nucleotide and isoform-dependent structural and dynamical features of Ras proteins. Structure 16(6):885–896. https://doi.org/10.1016/j.str.2008.03.009
Grant BJ, Gorfe AA, McCammon JA (2010) Large conformational changes in proteins: signaling and other functions. Curr Opin Struct Biol 20(2):142–147. https://doi.org/10.1016/j.sbi.2009.12.004
Hocker HJ, Cho KJ, Chen CY et al (2013) Andrographolide derivatives inhibit guanine nucleotide exchange and abrogate oncogenic Ras function. Proc Natl Acad Sci U S A 110(25):10201–10206. https://doi.org/10.1073/pnas.1300016110
Jefferies D, Khalid S (2021) Atomistic and coarse-grained simulations of membrane proteins: a practical guide. Methods 185:15–27. https://doi.org/10.1016/j.ymeth.2020.02.007
Hug S (2013) Classical molecular dynamics in a nutshell. Methods Mol Biol 924:127–152. https://doi.org/10.1007/978-1-62703-017-5_6
Zhu X, Lopes PE, Mackerell AD Jr (2012) Recent developments and applications of the CHARMM force fields. Wiley Interdiscip Rev Comput Mol Sci 2(1):167–185. https://doi.org/10.1002/wcms.74
Cheatham TE 3rd, Case DA (2013) Twenty-five years of nucleic acid simulations. Biopolymers 99(12):969–977. https://doi.org/10.1002/bip.22331
Dickson CJ, Madej BD, Skjevik AA et al (2014) Lipid14: the Amber lipid force field. J Chem Theory Comput 10(2):865–879. https://doi.org/10.1021/ct4010307
Maier JA, Martinez C, Kasavajhala K et al (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11(8):3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
Schmid N, Eichenberger AP, Choutko A et al (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J 40(7):843–856. https://doi.org/10.1007/s00249-011-0700-9
Marrink SJ, Risselada HJ, Yefimov S et al (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111(27):7812–7824. https://doi.org/10.1021/jp071097f
Huang J, AD MK Jr (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 34(25):2135–2145. https://doi.org/10.1002/jcc.23354
Gorfe AA, Pellarin R, Caflisch A (2004) Membrane localization and flexibility of a lipidated Ras peptide studied by molecular dynamics simulations. J Am Chem Soc 126(46):15277–15286. https://doi.org/10.1021/ja046607n
Gorfe AA, Hanzal-Bayer M, Abankwa D et al (2007) Structure and dynamics of the full-length lipid-modified H-Ras protein in a 1,2-dimyristoylglycero-3-phosphocholine bilayer. J Med Chem 50(4):674–684. https://doi.org/10.1021/jm061053f
Jang H, Abraham SJ, Chavan TS et al (2015) Mechanisms of membrane binding of small GTPase K-Ras4B farnesylated hypervariable region. J Biol Chem 290(15):9465–9477. https://doi.org/10.1074/jbc.M114.620724
Frisch MJ, Trucks GW, Schlegel HB et al (2016) Gaussian 16 Rev. C.01. Gaussian, Inc., Wallingford, CT
Valiev M, Bylaska EJ, Govind N et al (2010) NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput Phys Commun 181(9):1477–1489. https://doi.org/10.1016/j.cpc.2010.04.018
Neale C, Garcia AE (2018) Methionine 170 is an environmentally sensitive membrane anchor in the disordered HVR of K-Ras4B. J Phys Chem B 122(44):10086–10096. https://doi.org/10.1021/acs.jpcb.8b07919
Vanommeslaeghe K, Hatcher E, Acharya C et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690. https://doi.org/10.1002/jcc.21367
Li Z, Buck M (2020) Computational design of myristoylated cell-penetrating peptides targeting oncogenic K-Ras.G12D at the effector-binding membrane interface. J Chem Inf Model 60(1):306–315. https://doi.org/10.1021/acs.jcim.9b00690
Li Z-L, Buck M (2017) Computational modeling reveals that signaling lipids modulate the orientation of K-Ras4A at the membrane reflecting protein topology. Structure 25(4):679–689.e672. https://doi.org/10.1016/j.str.2017.02.007
Mayne CG, Saam J, Schulten K, Tajkhorshid E et al (2013) Rapid parameterization of small molecules using the force field toolkit. J Comput Chem 34(32):2757–2770. https://doi.org/10.1002/jcc.23422
Sasaki AT, Carracedo A, Locasale JW et al (2011) Ubiquitination of K-Ras enhances activation and facilitates binding to select downstream effectors. Sci Signal 4(163):ra13. https://doi.org/10.1126/scisignal.2001518
Li Z, Gorfe AA (2013) Deformation of a two-domain lipid bilayer due to asymmetric insertion of lipid-modified Ras peptides. Soft Matter 9(47):11249–11256. https://doi.org/10.1039/C3SM51388B
Li Z, Janosi L, Gorfe AA (2012) Formation and domain partitioning of H-ras peptide nanoclusters: effects of peptide concentration and lipid composition. J Am Chem Soc 134(41):17278–17285. https://doi.org/10.1021/ja307716z
Janosi L, Li Z, Hancock JF, Gorfe AA (2012) Organization, dynamics, and segregation of Ras nanoclusters in membrane domains. Proc Natl Acad Sci U S A 109(21):8097–8102. https://doi.org/10.1073/pnas.1200773109
de Jong DH, Singh G, Bennett WF et al (2013) Improved parameters for the Martini coarse-grained protein force field. J Chem Theory Comput 9(1):687–697. https://doi.org/10.1021/ct300646g
Atsmon-Raz Y, Tieleman DP (2017) Parameterization of palmitoylated cysteine, farnesylated cysteine, geranylgeranylated cysteine, and myristoylated glycine for the Martini force field. J Phys Chem B 121(49):11132–11143. https://doi.org/10.1021/acs.jpcb.7b10175
Webb B, Sali A (2016) Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci 86:2 9 1–2 9 37. https://doi.org/10.1002/cpps.20
Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38, 27-38. https://doi.org/10.1016/0263-7855(96)00018-5
Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084
The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrödinger, LLC
Lee J, Cheng X, Swails JM, Yeom MS et al (2016) CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J Chem Theory Comput 12(1):405–413. https://doi.org/10.1021/acs.jctc.5b00935
Jo S, Kim T, Iyer VG et al (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29(11):1859–1865. https://doi.org/10.1002/jcc.20945
Wu EL, Cheng X, Jo S et al (2014) CHARMM-GUI membrane builder toward realistic biological membrane simulations. J Comput Chem 35(27):1997–2004. https://doi.org/10.1002/jcc.23702
Periole X, Cavalli M, Marrink SJ et al (2009) Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition. J Chem Theory Comput 5(9):2531–2543. https://doi.org/10.1021/ct9002114
Ingolfsson HI, Carpenter TS, Bhatia H et al (2017) Computational lipidomics of the neuronal plasma membrane. Biophys J 113(10):2271–2280. https://doi.org/10.1016/j.bpj.2017.10.017
Ingolfsson HI, Melo MN, van Eerden FJ et al (2014) Lipid organization of the plasma membrane. J Am Chem Soc 136(41):14554–14559. https://doi.org/10.1021/ja507832e
Wassenaar TA, Ingolfsson HI, Bockmann RA et al (2015) Computational lipidomics with Insane: a versatile tool for generating custom membranes for molecular simulations. J Chem Theory Comput 11(5):2144–2155. https://doi.org/10.1021/acs.jctc.5b00209
Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802. https://doi.org/10.1002/jcc.20289
Case DA, Cheatham TE 3rd, Darden T et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688. https://doi.org/10.1002/jcc.20290
Van Der Spoel D, Lindahl E, Hess B et al (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718. https://doi.org/10.1002/jcc.20291
Prakash P, Zhou Y, Liang H et al (2016) Oncogenic K-Ras binds to an anionic membrane in two distinct orientations: a molecular dynamics analysis. Biophys J 110(5):1125–1138. https://doi.org/10.1016/j.bpj.2016.01.019
Prakash P, Gorfe AA (2019) Probing the conformational and energy landscapes of KRAS membrane orientation. J Phys Chem B 123(41):8644–8652. https://doi.org/10.1021/acs.jpcb.9b05796
Prakash P, Litwin D, Liang H et al (2019) Dynamics of membrane-bound G12V-KRAS from simulations and single-molecule FRET in native nanodiscs. Biophys J 116(2):179–183. https://doi.org/10.1016/j.bpj.2018.12.011
Neale C, Garcia AE (2020) The plasma membrane as a competitive inhibitor and positive allosteric modulator of KRas4B signaling. Biophys J 118(5):1129–1141. https://doi.org/10.1016/j.bpj.2019.12.039
Edler E, Stein M (2017) Probing the druggability of membrane-bound Rab5 by molecular dynamics simulations. J Enzyme Inhib Med Chem 32(1):434–443. https://doi.org/10.1080/14756366.2016.1260564
Prakash P, Gorfe AA (2017) Membrane orientation dynamics of lipid-modified small GTPases. Small GTPases 8(3):129–138. https://doi.org/10.1080/21541248.2016.1211067
Karandur D, Nawrotek A, Kuriyan J et al (2017) Multiple interactions between an Arf/GEF complex and charged lipids determine activation kinetics on the membrane. Proc Natl Acad Sci U S A 114(43):11416–11421. https://doi.org/10.1073/pnas.1707970114
Munzberg E, Stein M (2019) Structure and dynamics of mono- vs. doubly lipidated Rab5 in membranes. Int J Mol Sci 20(19):4773. https://doi.org/10.3390/ijms20194773
Prior IA, Harding A, Yan J et al (2001) GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nat Cell Biol 3(4):368–375. https://doi.org/10.1038/35070050
Prior IA, Muncke C, Parton RG et al (2003) Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J Cell Biol 160(2):165–170. https://doi.org/10.1083/jcb.200209091
Huster D, Vogel A, Katzka C et al (2003) Membrane insertion of a lipidated Ras peptide studied by FTIR, solid-state NMR, and neutron diffraction spectroscopy. J Am Chem Soc 125(14):4070–4079. https://doi.org/10.1021/ja0289245
Gorfe AA, Babakhani A, McCammon JA (2007) H-ras protein in a bilayer: interaction and structure perturbation. J Am Chem Soc 129(40):12280–12286. https://doi.org/10.1021/ja073949v
Janosi L, Gorfe AA (2010) Segregation of negatively charged phospholipids by the polycationic and farnesylated membrane anchor of Kras. Biophys J 99(11):3666–3674. https://doi.org/10.1016/j.bpj.2010.10.031
Zhou Y, Prakash P, Liang H et al (2017) Lipid-sorting specificity encoded in K-Ras membrane anchor regulates signal output. Cell 168(1–2):239–251. e216. https://doi.org/10.1016/j.cell.2016.11.059
Cho KJ, Casteel DE, Prakash P et al (2016) AMPK and endothelial nitric oxide synthase signaling regulates K-Ras plasma membrane interactions via cyclic GMP-dependent protein kinase 2. Mol Cell Biol 36(24):3086–3099. https://doi.org/10.1128/MCB.00365-16
Gorfe AA, Babakhani A, McCammon JA (2007) Free energy profile of H-ras membrane anchor upon membrane insertion. Angew Chem Int Ed Engl 46(43):8234–8237. https://doi.org/10.1002/anie.200702379
Gorfe AA, McCammon JA (2008) Similar membrane affinity of mono- and Di-S-acylated ras membrane anchors: a new twist in the role of protein lipidation. J Am Chem Soc 130(38):12624–12625. https://doi.org/10.1021/ja805110q
Gorfe AA, Baron R, McCammon JA (2008) Water-membrane partition thermodynamics of an amphiphilic lipopeptide: an enthalpy-driven hydrophobic effect. Biophys J 95(7):3269–3277. https://doi.org/10.1529/biophysj.108.136481
Abankwa D, Gorfe AA, Inder K et al (2010) Ras membrane orientation and nanodomain localization generate isoform diversity. Proc Natl Acad Sci U S A 107(3):1130–1135. https://doi.org/10.1073/pnas.0903907107
Sarkar-Banerjee S, Sayyed-Ahmad A, Prakash P et al (2017) Spatiotemporal analysis of K-Ras plasma membrane interactions reveals multiple high order homo-oligomeric complexes. J Am Chem Soc 139(38):13466–13475. https://doi.org/10.1021/jacs.7b06292
Prakash P, Sayyed-Ahmad A, Cho KJ et al (2017) Computational and biochemical characterization of two partially overlapping interfaces and multiple weak-affinity K-Ras dimers. Sci Rep 7:40109. https://doi.org/10.1038/srep40109
Jang H, Muratcioglu S, Gursoy A et al (2016) Membrane-associated Ras dimers are isoform-specific: K-Ras dimers differ from H-Ras dimers. Biochem J 473(12):1719–1732. https://doi.org/10.1042/BCJ20160031
Sayyed-Ahmad A, Cho KJ, Hancock JF et al (2016) Computational equilibrium thermodynamic and kinetic analysis of K-Ras dimerization through an effector binding surface suggests limited functional role. J Phys Chem B 120(33):8547–8556. https://doi.org/10.1021/acs.jpcb.6b02403
Travers T, Lopez CA, Van QN et al (2018) Molecular recognition of RAS/RAF complex at the membrane: role of RAF cysteine-rich domain. Sci Rep 8(1):8461. https://doi.org/10.1038/s41598-018-26832-4
Zhang M, Jang H, Nussinov R (2019) The structural basis for Ras activation of PI3Kalpha lipid kinase. Phys Chem Chem Phys 21(22):12021–12028. https://doi.org/10.1039/c9cp00101h
Lin X, Li Z, Gorfe AA (2015) Reversible effects of peptide concentration and lipid composition on H-Ras lipid anchor clustering. Biophys J 109(12):2467–2470. https://doi.org/10.1016/j.bpj.2015.11.009
Li H, Gorfe AA (2014) Membrane remodeling by surface-bound protein aggregates: insights from coarse-grained molecular dynamics simulation. J Phys Chem Lett 5(8):1457–1462. https://doi.org/10.1021/jz500451a
Li Z, Gorfe AA (2014) Modulation of a small two-domain lipid vesicle by linactants. J Phys Chem B 118(30):9028–9036. https://doi.org/10.1021/jp5042525
Prakash P, Hancock JF, Gorfe AA (2015) Binding hotspots on K-ras: consensus ligand binding sites and other reactive regions from probe-based molecular dynamics analysis. Proteins 83(5):898–909. https://doi.org/10.1002/prot.24786
Prakash P, Sayyed-Ahmad A, Gorfe AA (2015) pMD-membrane: a method for ligand binding site identification in membrane-bound proteins. PLoS Comput Biol 11(10):e1004469. https://doi.org/10.1371/journal.pcbi.1004469
Sayyed-Ahmad A, Gorfe AA (2017) Mixed-probe simulation and probe-derived surface topography map analysis for ligand binding site identification. J Chem Theory Comput 13(4):1851–1861. https://doi.org/10.1021/acs.jctc.7b00130
Lorent J, Levental K, Ganesan L et al (2020) The mammalian plasma membrane is defined by transmembrane asymmetries in lipid unsaturation, leaflet packing, and protein shape. bioRxiv:698837. https://doi.org/10.1101/698837
Jing Z, Liu C, Cheng SY et al (2019) Polarizable force fields for biomolecular simulations: recent advances and applications. Annu Rev Biophys 48:371–394. https://doi.org/10.1146/annurev-biophys-070317-033349
Yin G, Zhang J, Nair V, Truong V, Chaia A, Petela J, Harrison J, Gorfe AA, Campbell SL (2020) KRAS ubiquitination at lysine 104 retains exchange factor regulation by dynamically modulating the conformation of the interface. Iscience 23(9):101448. https://doi.org/10.1016/j.isci.2020.101448
Acknowledgments
This work was supported in part by the National Institutes of Health grant R01GM124233 and the Cancer Prevention and Research Institute of Texas (CPRIT) grant RP190366. V.N. is supported by UTHealth Innovation for Cancer Prevention Research Training Program Pre-Doctoral Fellowship (Cancer Prevention and Research Institute of Texas grant RP160015).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Nair, V.V., Gorfe, A.A. (2021). Molecular Dynamics Simulation of Lipid-Modified Signaling Proteins. In: Moreira, I.S., Machuqueiro, M., Mourão, J. (eds) Computational Design of Membrane Proteins. Methods in Molecular Biology, vol 2315. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1468-6_9
Download citation
DOI: https://doi.org/10.1007/978-1-0716-1468-6_9
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-1467-9
Online ISBN: 978-1-0716-1468-6
eBook Packages: Springer Protocols