Skip to main content

Molecular Dynamics Simulation of Lipid-Modified Signaling Proteins

Part of the Methods in Molecular Biology book series (MIMB,volume 2315)

Abstract

In this chapter, we provide a practical guide on how to plan, execute, and interpret atomistic and coarse-grained molecular dynamics (MD) simulations of lipid-modified proteins in model membranes. After outlining some key practical considerations when planning such simulations, we survey resources and techniques to obtain force field parameters for nonconventional amino acids, such as posttranslationally lipid-modified amino acids that are unique to this class of proteins. We then describe the protocols to build, setup, and run the simulations, followed by a brief comment on the analysis and interpretation of the simulations. Finally, examples of insights that could be gained from atomistic and coarse-grained MD simulations of lipidated proteins will be provided, using RAS proteins as illustrative examples. Throughout the chapter, we highlight the main advantages and limitations of simulating RAS and related lipid-modified G-proteins in biomimetic membranes.

Key words

  • Lipidated proteins
  • Membrane
  • Lipid bilayer
  • Molecular dynamics simulation
  • G-proteins

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in cancer. Cancer Res 72(10):2457–2467. https://doi.org/10.1158/0008-5472.CAN-11-2612

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gorfe AA, Cho KJ (2019) Approaches to inhibiting oncogenic K-Ras. Small GTPases 12(2):96-105. https://doi.org/10.1080/21541248.2019.1655883

  3. Prakash P, Gorfe AA (2013) Lessons from computer simulations of Ras proteins in solution and in membrane. Biochim Biophys Acta 1830(11):5211–5218. https://doi.org/10.1016/j.bbagen.2013.07.024

    CrossRef  CAS  PubMed  Google Scholar 

  4. Parker JA, Mattos C (2018) The K-Ras, N-Ras, and H-Ras isoforms: unique conformational preferences and implications for targeting oncogenic mutants. Cold Spring Harb Perspect Med 8(8):a031427. https://doi.org/10.1101/cshperspect.a031427

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhou Y, Prakash P, Gorfe AA, Hancock JF (2018) Ras and the plasma membrane: a complicated relationship. Cold Spring Harb Perspect Med 8(10):a031831. https://doi.org/10.1101/cshperspect.a031831

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grant BJ, Lukman S, Hocker HJ, Sayyah J, Brown JH, McCammon JA, Gorfe AA (2011) Novel allosteric sites on Ras for lead generation. PLoS One 6(10):e25711. https://doi.org/10.1371/journal.pone.0025711

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  7. Grant BJ, McCammon JA, Gorfe AA (2010) Conformational selection in G-proteins: lessons from Ras and Rho. Biophys J 99(11):L87–L89. https://doi.org/10.1016/j.bpj.2010.10.020

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grant BJ, Gorfe AA, McCammon JA (2009) Ras conformational switching: simulating nucleotide-dependent conformational transitions with accelerated molecular dynamics. PLoS Comput Biol 5(3):e1000325. https://doi.org/10.1371/journal.pcbi.1000325

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gorfe AA, Grant BJ, McCammon JA (2008) Mapping the nucleotide and isoform-dependent structural and dynamical features of Ras proteins. Structure 16(6):885–896. https://doi.org/10.1016/j.str.2008.03.009

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grant BJ, Gorfe AA, McCammon JA (2010) Large conformational changes in proteins: signaling and other functions. Curr Opin Struct Biol 20(2):142–147. https://doi.org/10.1016/j.sbi.2009.12.004

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hocker HJ, Cho KJ, Chen CY et al (2013) Andrographolide derivatives inhibit guanine nucleotide exchange and abrogate oncogenic Ras function. Proc Natl Acad Sci U S A 110(25):10201–10206. https://doi.org/10.1073/pnas.1300016110

    CrossRef  PubMed  PubMed Central  Google Scholar 

  12. Jefferies D, Khalid S (2021) Atomistic and coarse-grained simulations of membrane proteins: a practical guide. Methods 185:15–27. https://doi.org/10.1016/j.ymeth.2020.02.007

    CrossRef  CAS  PubMed  Google Scholar 

  13. Hug S (2013) Classical molecular dynamics in a nutshell. Methods Mol Biol 924:127–152. https://doi.org/10.1007/978-1-62703-017-5_6

    CrossRef  CAS  PubMed  Google Scholar 

  14. Zhu X, Lopes PE, Mackerell AD Jr (2012) Recent developments and applications of the CHARMM force fields. Wiley Interdiscip Rev Comput Mol Sci 2(1):167–185. https://doi.org/10.1002/wcms.74

    CrossRef  CAS  PubMed  Google Scholar 

  15. Cheatham TE 3rd, Case DA (2013) Twenty-five years of nucleic acid simulations. Biopolymers 99(12):969–977. https://doi.org/10.1002/bip.22331

    CrossRef  CAS  PubMed  Google Scholar 

  16. Dickson CJ, Madej BD, Skjevik AA et al (2014) Lipid14: the Amber lipid force field. J Chem Theory Comput 10(2):865–879. https://doi.org/10.1021/ct4010307

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maier JA, Martinez C, Kasavajhala K et al (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11(8):3696–3713. https://doi.org/10.1021/acs.jctc.5b00255

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schmid N, Eichenberger AP, Choutko A et al (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J 40(7):843–856. https://doi.org/10.1007/s00249-011-0700-9

    CrossRef  CAS  PubMed  Google Scholar 

  19. Marrink SJ, Risselada HJ, Yefimov S et al (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111(27):7812–7824. https://doi.org/10.1021/jp071097f

    CrossRef  CAS  PubMed  Google Scholar 

  20. Huang J, AD MK Jr (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 34(25):2135–2145. https://doi.org/10.1002/jcc.23354

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gorfe AA, Pellarin R, Caflisch A (2004) Membrane localization and flexibility of a lipidated Ras peptide studied by molecular dynamics simulations. J Am Chem Soc 126(46):15277–15286. https://doi.org/10.1021/ja046607n

    CrossRef  CAS  PubMed  Google Scholar 

  22. Gorfe AA, Hanzal-Bayer M, Abankwa D et al (2007) Structure and dynamics of the full-length lipid-modified H-Ras protein in a 1,2-dimyristoylglycero-3-phosphocholine bilayer. J Med Chem 50(4):674–684. https://doi.org/10.1021/jm061053f

    CrossRef  CAS  PubMed  Google Scholar 

  23. Jang H, Abraham SJ, Chavan TS et al (2015) Mechanisms of membrane binding of small GTPase K-Ras4B farnesylated hypervariable region. J Biol Chem 290(15):9465–9477. https://doi.org/10.1074/jbc.M114.620724

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB et al (2016) Gaussian 16 Rev. C.01. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  25. Valiev M, Bylaska EJ, Govind N et al (2010) NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput Phys Commun 181(9):1477–1489. https://doi.org/10.1016/j.cpc.2010.04.018

    CrossRef  CAS  Google Scholar 

  26. Neale C, Garcia AE (2018) Methionine 170 is an environmentally sensitive membrane anchor in the disordered HVR of K-Ras4B. J Phys Chem B 122(44):10086–10096. https://doi.org/10.1021/acs.jpcb.8b07919

    CrossRef  CAS  PubMed  Google Scholar 

  27. Vanommeslaeghe K, Hatcher E, Acharya C et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690. https://doi.org/10.1002/jcc.21367

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li Z, Buck M (2020) Computational design of myristoylated cell-penetrating peptides targeting oncogenic K-Ras.G12D at the effector-binding membrane interface. J Chem Inf Model 60(1):306–315. https://doi.org/10.1021/acs.jcim.9b00690

    CrossRef  CAS  PubMed  Google Scholar 

  29. Li Z-L, Buck M (2017) Computational modeling reveals that signaling lipids modulate the orientation of K-Ras4A at the membrane reflecting protein topology. Structure 25(4):679–689.e672. https://doi.org/10.1016/j.str.2017.02.007

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mayne CG, Saam J, Schulten K, Tajkhorshid E et al (2013) Rapid parameterization of small molecules using the force field toolkit. J Comput Chem 34(32):2757–2770. https://doi.org/10.1002/jcc.23422

    CrossRef  CAS  PubMed  Google Scholar 

  31. Sasaki AT, Carracedo A, Locasale JW et al (2011) Ubiquitination of K-Ras enhances activation and facilitates binding to select downstream effectors. Sci Signal 4(163):ra13. https://doi.org/10.1126/scisignal.2001518

    CrossRef  PubMed  PubMed Central  Google Scholar 

  32. Li Z, Gorfe AA (2013) Deformation of a two-domain lipid bilayer due to asymmetric insertion of lipid-modified Ras peptides. Soft Matter 9(47):11249–11256. https://doi.org/10.1039/C3SM51388B

    CrossRef  CAS  Google Scholar 

  33. Li Z, Janosi L, Gorfe AA (2012) Formation and domain partitioning of H-ras peptide nanoclusters: effects of peptide concentration and lipid composition. J Am Chem Soc 134(41):17278–17285. https://doi.org/10.1021/ja307716z

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  34. Janosi L, Li Z, Hancock JF, Gorfe AA (2012) Organization, dynamics, and segregation of Ras nanoclusters in membrane domains. Proc Natl Acad Sci U S A 109(21):8097–8102. https://doi.org/10.1073/pnas.1200773109

    CrossRef  PubMed  PubMed Central  Google Scholar 

  35. de Jong DH, Singh G, Bennett WF et al (2013) Improved parameters for the Martini coarse-grained protein force field. J Chem Theory Comput 9(1):687–697. https://doi.org/10.1021/ct300646g

    CrossRef  CAS  PubMed  Google Scholar 

  36. Atsmon-Raz Y, Tieleman DP (2017) Parameterization of palmitoylated cysteine, farnesylated cysteine, geranylgeranylated cysteine, and myristoylated glycine for the Martini force field. J Phys Chem B 121(49):11132–11143. https://doi.org/10.1021/acs.jpcb.7b10175

    CrossRef  CAS  PubMed  Google Scholar 

  37. Webb B, Sali A (2016) Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci 86:2 9 1–2 9 37. https://doi.org/10.1002/cpps.20

    CrossRef  Google Scholar 

  38. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38, 27-38. https://doi.org/10.1016/0263-7855(96)00018-5

    CrossRef  CAS  PubMed  Google Scholar 

  39. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084

    CrossRef  CAS  PubMed  Google Scholar 

  40. The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrödinger, LLC

    Google Scholar 

  41. Lee J, Cheng X, Swails JM, Yeom MS et al (2016) CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J Chem Theory Comput 12(1):405–413. https://doi.org/10.1021/acs.jctc.5b00935

    CrossRef  CAS  PubMed  Google Scholar 

  42. Jo S, Kim T, Iyer VG et al (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29(11):1859–1865. https://doi.org/10.1002/jcc.20945

    CrossRef  CAS  PubMed  Google Scholar 

  43. Wu EL, Cheng X, Jo S et al (2014) CHARMM-GUI membrane builder toward realistic biological membrane simulations. J Comput Chem 35(27):1997–2004. https://doi.org/10.1002/jcc.23702

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  44. Periole X, Cavalli M, Marrink SJ et al (2009) Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition. J Chem Theory Comput 5(9):2531–2543. https://doi.org/10.1021/ct9002114

    CrossRef  CAS  PubMed  Google Scholar 

  45. Ingolfsson HI, Carpenter TS, Bhatia H et al (2017) Computational lipidomics of the neuronal plasma membrane. Biophys J 113(10):2271–2280. https://doi.org/10.1016/j.bpj.2017.10.017

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ingolfsson HI, Melo MN, van Eerden FJ et al (2014) Lipid organization of the plasma membrane. J Am Chem Soc 136(41):14554–14559. https://doi.org/10.1021/ja507832e

    CrossRef  CAS  PubMed  Google Scholar 

  47. Wassenaar TA, Ingolfsson HI, Bockmann RA et al (2015) Computational lipidomics with Insane: a versatile tool for generating custom membranes for molecular simulations. J Chem Theory Comput 11(5):2144–2155. https://doi.org/10.1021/acs.jctc.5b00209

    CrossRef  CAS  PubMed  Google Scholar 

  48. Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802. https://doi.org/10.1002/jcc.20289

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  49. Case DA, Cheatham TE 3rd, Darden T et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688. https://doi.org/10.1002/jcc.20290

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  50. Van Der Spoel D, Lindahl E, Hess B et al (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718. https://doi.org/10.1002/jcc.20291

    CrossRef  CAS  Google Scholar 

  51. Prakash P, Zhou Y, Liang H et al (2016) Oncogenic K-Ras binds to an anionic membrane in two distinct orientations: a molecular dynamics analysis. Biophys J 110(5):1125–1138. https://doi.org/10.1016/j.bpj.2016.01.019

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  52. Prakash P, Gorfe AA (2019) Probing the conformational and energy landscapes of KRAS membrane orientation. J Phys Chem B 123(41):8644–8652. https://doi.org/10.1021/acs.jpcb.9b05796

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  53. Prakash P, Litwin D, Liang H et al (2019) Dynamics of membrane-bound G12V-KRAS from simulations and single-molecule FRET in native nanodiscs. Biophys J 116(2):179–183. https://doi.org/10.1016/j.bpj.2018.12.011

    CrossRef  CAS  PubMed  Google Scholar 

  54. Neale C, Garcia AE (2020) The plasma membrane as a competitive inhibitor and positive allosteric modulator of KRas4B signaling. Biophys J 118(5):1129–1141. https://doi.org/10.1016/j.bpj.2019.12.039

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  55. Edler E, Stein M (2017) Probing the druggability of membrane-bound Rab5 by molecular dynamics simulations. J Enzyme Inhib Med Chem 32(1):434–443. https://doi.org/10.1080/14756366.2016.1260564

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  56. Prakash P, Gorfe AA (2017) Membrane orientation dynamics of lipid-modified small GTPases. Small GTPases 8(3):129–138. https://doi.org/10.1080/21541248.2016.1211067

    CrossRef  CAS  PubMed  Google Scholar 

  57. Karandur D, Nawrotek A, Kuriyan J et al (2017) Multiple interactions between an Arf/GEF complex and charged lipids determine activation kinetics on the membrane. Proc Natl Acad Sci U S A 114(43):11416–11421. https://doi.org/10.1073/pnas.1707970114

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  58. Munzberg E, Stein M (2019) Structure and dynamics of mono- vs. doubly lipidated Rab5 in membranes. Int J Mol Sci 20(19):4773. https://doi.org/10.3390/ijms20194773

    CrossRef  CAS  PubMed Central  Google Scholar 

  59. Prior IA, Harding A, Yan J et al (2001) GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nat Cell Biol 3(4):368–375. https://doi.org/10.1038/35070050

    CrossRef  CAS  PubMed  Google Scholar 

  60. Prior IA, Muncke C, Parton RG et al (2003) Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J Cell Biol 160(2):165–170. https://doi.org/10.1083/jcb.200209091

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  61. Huster D, Vogel A, Katzka C et al (2003) Membrane insertion of a lipidated Ras peptide studied by FTIR, solid-state NMR, and neutron diffraction spectroscopy. J Am Chem Soc 125(14):4070–4079. https://doi.org/10.1021/ja0289245

    CrossRef  CAS  PubMed  Google Scholar 

  62. Gorfe AA, Babakhani A, McCammon JA (2007) H-ras protein in a bilayer: interaction and structure perturbation. J Am Chem Soc 129(40):12280–12286. https://doi.org/10.1021/ja073949v

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  63. Janosi L, Gorfe AA (2010) Segregation of negatively charged phospholipids by the polycationic and farnesylated membrane anchor of Kras. Biophys J 99(11):3666–3674. https://doi.org/10.1016/j.bpj.2010.10.031

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhou Y, Prakash P, Liang H et al (2017) Lipid-sorting specificity encoded in K-Ras membrane anchor regulates signal output. Cell 168(1–2):239–251. e216. https://doi.org/10.1016/j.cell.2016.11.059

    CrossRef  CAS  PubMed  Google Scholar 

  65. Cho KJ, Casteel DE, Prakash P et al (2016) AMPK and endothelial nitric oxide synthase signaling regulates K-Ras plasma membrane interactions via cyclic GMP-dependent protein kinase 2. Mol Cell Biol 36(24):3086–3099. https://doi.org/10.1128/MCB.00365-16

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gorfe AA, Babakhani A, McCammon JA (2007) Free energy profile of H-ras membrane anchor upon membrane insertion. Angew Chem Int Ed Engl 46(43):8234–8237. https://doi.org/10.1002/anie.200702379

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gorfe AA, McCammon JA (2008) Similar membrane affinity of mono- and Di-S-acylated ras membrane anchors: a new twist in the role of protein lipidation. J Am Chem Soc 130(38):12624–12625. https://doi.org/10.1021/ja805110q

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gorfe AA, Baron R, McCammon JA (2008) Water-membrane partition thermodynamics of an amphiphilic lipopeptide: an enthalpy-driven hydrophobic effect. Biophys J 95(7):3269–3277. https://doi.org/10.1529/biophysj.108.136481

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  69. Abankwa D, Gorfe AA, Inder K et al (2010) Ras membrane orientation and nanodomain localization generate isoform diversity. Proc Natl Acad Sci U S A 107(3):1130–1135. https://doi.org/10.1073/pnas.0903907107

    CrossRef  PubMed  PubMed Central  Google Scholar 

  70. Sarkar-Banerjee S, Sayyed-Ahmad A, Prakash P et al (2017) Spatiotemporal analysis of K-Ras plasma membrane interactions reveals multiple high order homo-oligomeric complexes. J Am Chem Soc 139(38):13466–13475. https://doi.org/10.1021/jacs.7b06292

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  71. Prakash P, Sayyed-Ahmad A, Cho KJ et al (2017) Computational and biochemical characterization of two partially overlapping interfaces and multiple weak-affinity K-Ras dimers. Sci Rep 7:40109. https://doi.org/10.1038/srep40109

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jang H, Muratcioglu S, Gursoy A et al (2016) Membrane-associated Ras dimers are isoform-specific: K-Ras dimers differ from H-Ras dimers. Biochem J 473(12):1719–1732. https://doi.org/10.1042/BCJ20160031

    CrossRef  CAS  PubMed  Google Scholar 

  73. Sayyed-Ahmad A, Cho KJ, Hancock JF et al (2016) Computational equilibrium thermodynamic and kinetic analysis of K-Ras dimerization through an effector binding surface suggests limited functional role. J Phys Chem B 120(33):8547–8556. https://doi.org/10.1021/acs.jpcb.6b02403

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  74. Travers T, Lopez CA, Van QN et al (2018) Molecular recognition of RAS/RAF complex at the membrane: role of RAF cysteine-rich domain. Sci Rep 8(1):8461. https://doi.org/10.1038/s41598-018-26832-4

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang M, Jang H, Nussinov R (2019) The structural basis for Ras activation of PI3Kalpha lipid kinase. Phys Chem Chem Phys 21(22):12021–12028. https://doi.org/10.1039/c9cp00101h

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lin X, Li Z, Gorfe AA (2015) Reversible effects of peptide concentration and lipid composition on H-Ras lipid anchor clustering. Biophys J 109(12):2467–2470. https://doi.org/10.1016/j.bpj.2015.11.009

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li H, Gorfe AA (2014) Membrane remodeling by surface-bound protein aggregates: insights from coarse-grained molecular dynamics simulation. J Phys Chem Lett 5(8):1457–1462. https://doi.org/10.1021/jz500451a

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li Z, Gorfe AA (2014) Modulation of a small two-domain lipid vesicle by linactants. J Phys Chem B 118(30):9028–9036. https://doi.org/10.1021/jp5042525

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  79. Prakash P, Hancock JF, Gorfe AA (2015) Binding hotspots on K-ras: consensus ligand binding sites and other reactive regions from probe-based molecular dynamics analysis. Proteins 83(5):898–909. https://doi.org/10.1002/prot.24786

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  80. Prakash P, Sayyed-Ahmad A, Gorfe AA (2015) pMD-membrane: a method for ligand binding site identification in membrane-bound proteins. PLoS Comput Biol 11(10):e1004469. https://doi.org/10.1371/journal.pcbi.1004469

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sayyed-Ahmad A, Gorfe AA (2017) Mixed-probe simulation and probe-derived surface topography map analysis for ligand binding site identification. J Chem Theory Comput 13(4):1851–1861. https://doi.org/10.1021/acs.jctc.7b00130

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lorent J, Levental K, Ganesan L et al (2020) The mammalian plasma membrane is defined by transmembrane asymmetries in lipid unsaturation, leaflet packing, and protein shape. bioRxiv:698837. https://doi.org/10.1101/698837

  83. Jing Z, Liu C, Cheng SY et al (2019) Polarizable force fields for biomolecular simulations: recent advances and applications. Annu Rev Biophys 48:371–394. https://doi.org/10.1146/annurev-biophys-070317-033349

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yin G, Zhang J, Nair V, Truong V, Chaia A, Petela J, Harrison J, Gorfe AA, Campbell SL (2020) KRAS ubiquitination at lysine 104 retains exchange factor regulation by dynamically modulating the conformation of the interface. Iscience 23(9):101448. https://doi.org/10.1016/j.isci.2020.101448

Download references

Acknowledgments

This work was supported in part by the National Institutes of Health grant R01GM124233 and the Cancer Prevention and Research Institute of Texas (CPRIT) grant RP190366. V.N. is supported by UTHealth Innovation for Cancer Prevention Research Training Program Pre-Doctoral Fellowship (Cancer Prevention and Research Institute of Texas grant RP160015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alemayehu A. Gorfe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nair, V.V., Gorfe, A.A. (2021). Molecular Dynamics Simulation of Lipid-Modified Signaling Proteins. In: Moreira, I.S., Machuqueiro, M., Mourão, J. (eds) Computational Design of Membrane Proteins. Methods in Molecular Biology, vol 2315. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1468-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1468-6_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1467-9

  • Online ISBN: 978-1-0716-1468-6

  • eBook Packages: Springer Protocols