Skip to main content

Identification and Characterization of Specific Protein–Lipid Interactions Using Molecular Simulation

  • Protocol
  • First Online:
Computational Design of Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2315))

Abstract

Interactions with lipids can dramatically shape and define the activity of membrane proteins. Here, we describe tools that allow the identification of these interactions using molecular dynamics simulation. Additionally, we provide the details of how to use different methods to probe the affinity of these interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50. https://doi.org/10.1126/science.1174621

    Article  CAS  PubMed  Google Scholar 

  2. Whorton MR, MacKinnon R (2011) Crystal structure of the mammalian GIRK2 K + channel and gating regulation by G proteins, PIP 2, and sodium. Cell 147:199–208. https://doi.org/10.1016/j.cell.2011.07.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Norimatsu Y, Hasegawa K, Shimizu N, Toyoshima C (2017) Protein–phospholipid interplay revealed with crystals of a calcium pump. Nature 545:193. https://doi.org/10.1038/nature22357

    Article  CAS  PubMed  Google Scholar 

  4. Marrink SJ, Risselada HJ, Yefimov S et al (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824. https://doi.org/10.1021/jp071097f

    Article  CAS  PubMed  Google Scholar 

  5. Monticelli L, Kandasamy SK, Periole X et al (2008) The MARTINI coarse-grained force field: extension to proteins. J Chem Theory Comput 4:819–834. https://doi.org/10.1021/ct700324x

    Article  CAS  PubMed  Google Scholar 

  6. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56. https://doi.org/10.1016/0010-4655(95)00042-E

    Article  CAS  Google Scholar 

  7. Van Der Spoel D, Lindahl E, Hess B et al (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718. https://doi.org/10.1002/jcc.20291

    Article  CAS  Google Scholar 

  8. Hilgemann DW, Feng S, Nasuhoglu C (2001) The complex and intriguing lives of PIP2 with ion channels and transporters. Sci STKE 2001:re19. https://doi.org/10.1126/stke.2001.111.re19

    Article  CAS  PubMed  Google Scholar 

  9. Stansfeld PJ, Hopkinson R, Ashcroft FM, Sansom MSP (2009) PIP2-binding site in Kir channels: definition by multiscale biomolecular simulations. Biochemistry 48:10926–10933. https://doi.org/10.1021/bi9013193

    Article  CAS  PubMed  Google Scholar 

  10. Hansen SB, Tao X, MacKinnon R (2011) Structural basis of PIP 2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 477:495. https://doi.org/10.1038/nature10370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Duncan AL, Corey RA, Sansom MSP (2020) Defining how multiple lipid species interact with inward rectifier potassium (Kir2) channels. Proc Natl Acad Sci 117:7803–7813. https://doi.org/10.1073/pnas.1918387117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Darré L, Machado MR, Brandner AF et al (2015) SIRAH: a structurally unbiased coarse-grained force field for proteins with aqueous solvation and long-range electrostatics. J Chem Theory Comput 11:723–739. https://doi.org/10.1021/ct5007746

    Article  CAS  PubMed  Google Scholar 

  13. Barrera EE, Frigini EN, Porasso RD, Pantano S (2017) Modeling DMPC lipid membranes with SIRAH force-field. J Mol Model 23:259. https://doi.org/10.1007/s00894-017-3426-5

    Article  CAS  PubMed  Google Scholar 

  14. Barrera EE, Machado MR, Pantano S (2019) Fat SIRAH: coarse-grained phospholipids to explore membrane–protein dynamics. J Chem Theory Comput 15:5674–5688. https://doi.org/10.1021/acs.jctc.9b00435

    Article  CAS  PubMed  Google Scholar 

  15. Periole X, Marrink SJ (2013) The martini coarse-grained force field. Methods Mol Biol 924:533–565. https://doi.org/10.1007/978-1-62703-17-5_20

    Article  CAS  PubMed  Google Scholar 

  16. de Jong DH, Singh G, Bennett WFDD et al (2012) Improved parameters for the martini coarse-grained protein force field. J Chem Theory Comput 9:687–697. https://doi.org/10.1021/ct300646g

    Article  CAS  PubMed  Google Scholar 

  17. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637. https://doi.org/10.1002/bip.360221211

    Article  CAS  PubMed  Google Scholar 

  18. Joosten RP, Te Beek TAH, Krieger E et al (2010) A series of PDB related databases for everyday needs. Nucleic Acids Res 39:D411–D419. https://doi.org/10.1093/nar/gkq1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Javanainen M, Enkavi G, Guixà-Gonzaléz R et al (2019) Reduced level of docosahexaenoic acid shifts GPCR neuroreceptors to less ordered membrane regions. PLoS Comput Biol 15:e1007033. https://doi.org/10.1371/journal.pcbi.1007033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Parker JL, Corey RA, Stansfeld PJ, Newstead S (2019) Structural basis for substrate specificity and regulation of nucleotide sugar transporters in the lipid bilayer. Nat Commun 10:1–10. https://doi.org/10.1038/s41467-019-12673-w

    Article  CAS  Google Scholar 

  21. Wassenaar TA, Ingólfsson HI, Böckmann RA et al (2015) Computational lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. J Chem Theory Comput 11:2144–2155. https://doi.org/10.1021/acs.jctc.5b00209

    Article  CAS  PubMed  Google Scholar 

  22. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  23. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29:1859–1865. https://doi.org/10.1002/jcc.20945

    Article  CAS  PubMed  Google Scholar 

  24. Qi Y, Ingólfsson HI, Cheng X et al (2015) CHARMM-GUI martini maker for coarse-grained simulations with the martini force field. J Chem Theory Comput 11:4486–4494. https://doi.org/10.1021/acs.jctc.5b00513

    Article  CAS  PubMed  Google Scholar 

  25. Nugent T, Jones DT (2013) Membrane protein orientation and refinement using a knowledge-based statistical potential. BMC Bioinformatics 14:276. https://doi.org/10.1186/1471-2105-14-276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lomize MA, Pogozheva ID, Joo H et al (2012) OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res 40:D370–D376. https://doi.org/10.1093/nar/gkr703

    Article  CAS  PubMed  Google Scholar 

  27. Stansfeld PJ, Sansom MSP (2011) From coarse grained to atomistic: a serial multiscale approach to membrane protein simulations. J Chem Theory Comput 7:1157–1166. https://doi.org/10.1021/ct100569y

    Article  CAS  PubMed  Google Scholar 

  28. Wassenaar TA, Pluhackova K, Böckmann RA et al (2014) Going backward: a flexible geometric approach to reverse transformation from coarse grained to atomistic models. J Chem Theory Comput 10:676–690. https://doi.org/10.1021/ct400617g

    Article  CAS  PubMed  Google Scholar 

  29. Stansfeld PJ, Jefferys EE, Sansom MSP (2013) Multiscale simulations reveal conserved patterns of lipid interactions with aquaporins. Structure 21:810–819. https://doi.org/10.1016/j.str.2013.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O (2011) MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J Comput Chem 32:2319–2327. https://doi.org/10.1002/jcc.21787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gowers RJ, Linke M, Barnoud J et al (2019) MDAnalysis: a python package for the rapid analysis of molecular dynamics simulations. Los Alamos National Lab.(LANL), Los Alamos, NM

    Google Scholar 

  32. Corey RA, Pyle E, Allen WJ et al (2018) Specific cardiolipin–SecY interactions are required for proton-motive force stimulation of protein secretion. Proc Natl Acad Sci U S A 115:7967–7972. https://doi.org/10.1073/pnas.1721536115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee JY, Lyman E (2012) Predictions for cholesterol interaction sites on the A2Aadenosine receptor. J Am Chem Soc 134:16512–16515. https://doi.org/10.1021/ja307532d

    Article  CAS  PubMed  Google Scholar 

  34. Fortunato S (2010) Community detection in graphs. Phys Rep 486:75–174. https://doi.org/10.1016/j.physrep.2009.11.002

    Article  Google Scholar 

  35. Barbera N, Ayee MAA, Akpa BS, Levitan I (2018) Molecular dynamics simulations of Kir2. 2 interactions with an ensemble of cholesterol molecules. Biophys J 115:1264–1280. https://doi.org/10.1016/j.bpj.2018.07.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fantini J, Barrantes FJ (2013) How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front Physiol 4:31. https://doi.org/10.3389/fphys.2013.00031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hedger G, Koldsø H, Chavent M et al (2019) Cholesterol interaction sites on the transmembrane domain of the hedgehog signal transducer and class F G protein-coupled receptor smoothened. Structure 27:549–559.e2. https://doi.org/10.1016/j.str.2018.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang Q, Corey RA, Hedger G et al (2020) Lipid interactions of a ciliary membrane TRP channel: simulation and structural studies of polycystin-2. Structure 28:169–184. https://doi.org/10.1016/j.str.2019.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou W, Fiorin G, Anselmi C et al (2019) Large-scale state-dependent membrane remodeling by a transporter protein. elife 8:e50576. https://doi.org/10.7554/eLife.50576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Corradi V, Mendez-Villuendas E, Ingólfsson HI et al (2018) Lipid–protein interactions are unique fingerprints for membrane proteins. ACS Cent Sci 4:709–717. https://doi.org/10.1021/acscentsci.8b00143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shearer J, Jefferies D, Khalid S (2019) Outer membrane proteins OmpA, FhuA, OmpF, EstA, BtuB, and OmpX have unique lipopolysaccharide fingerprints. J Chem Theory Comput 15:2608–2619. https://doi.org/10.1021/acs.jctc.8b01059

    Article  CAS  PubMed  Google Scholar 

  42. Bushell SR, Pike ACW, Falzone ME et al (2019) The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase TMEM16K. Nat Commun 10:1–16. https://doi.org/10.1038/s41467-019-11753-1

    Article  CAS  Google Scholar 

  43. Harayama T, Riezman H (2018) Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol 19(5):281–296. https://doi.org/10.1038/nrm.2017.138

    Article  CAS  PubMed  Google Scholar 

  44. Lorent JH, Levental KR, Ganesan L et al (2020) Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat Chem Biol 16:644–652. https://doi.org/10.1038/s41589-020-0529-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bolla JR, Corey RA, Sahin C et al (2019) A mass spectrometry-based approach to distinguish annular and specific lipid binding to membrane proteins. Angew Chemie Int Ed Engl 59:3523–3528. https://doi.org/10.1002/anie.201914411

    Article  CAS  Google Scholar 

  46. Arnarez C, Marrink SJ, Periole X (2013) Identification of cardiolipin binding sites on cytochrome c oxidase at the entrance of proton channels. Sci Rep 3:1–9. https://doi.org/10.1038/srep01263

    Article  CAS  Google Scholar 

  47. Corey RA, Stansfeld PJ, Sansom MSP (2019) The energetics of protein–lipid interactions as viewed by molecular simulations. Biochem Soc Trans 48:25–37. https://doi.org/10.1042/BST20190149

    Article  PubMed Central  Google Scholar 

  48. Hedger G, Rouse SL, Domański J et al (2016) Lipid-loving ANTs: molecular simulations of cardiolipin interactions and the organization of the adenine nucleotide translocase in model mitochondrial membranes. Biochemistry 55:6238–6249. https://doi.org/10.1021/acs.biochem.6b00751

    Article  CAS  PubMed  Google Scholar 

  49. Souaille M, Roux B (2001) Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations. Comput Phys Commun 135:40–57. https://doi.org/10.1016/S0010-4655(00)00215-0

    Article  CAS  Google Scholar 

  50. Hub JS, De Groot BL, Van Der Spoel D (2010) g_wham — a free weighted histogram analysis implementation including robust error and autocorrelation estimates. J Chem Theory Comput 6:3713–3720. https://doi.org/10.1021/ct100494z

    Article  CAS  Google Scholar 

  51. Corey RA, Vickery ON, Sansom MSP, Stansfeld PJ (2019) Insights into membrane protein–lipid interactions from free energy calculations. J Chem Theory Comput 15:5727–5736. https://doi.org/10.1021/acs.jctc.9b00548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shirts MR, Mobley DL (2013) An introduction to best practices in free energy calculations. In: Biomolecular simulations. Springer, pp 271–311

    Google Scholar 

  53. Klimovich PV, Shirts MR, Mobley DL (2015) Guidelines for the analysis of free energy calculations. J Comput Aided Mol Des 29:397–411. https://doi.org/10.1007/s10822-015-9840-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Salari R, Joseph T, Lohia R et al (2018) A streamlined, general approach for computing ligand binding free energies and its application to GPCR-bound cholesterol. J Chem Theory Comput 14:6560–6573. https://doi.org/10.1021/acs.jctc.8b00447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bussi G, Laio A, Parrinello M (2006) Equilibrium free energies from nonequilibrium metadynamics. Phys Rev Lett 96:10–13. https://doi.org/10.1103/PhysRevLett.96.090601

    Article  CAS  Google Scholar 

  56. Barducci A, Bussi G, Parrinello M (2008) Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett 100:20603. https://doi.org/10.1103/PhysRevLett.100.020603

    Article  CAS  Google Scholar 

  57. Tribello GA, Bonomi M, Branduardi D et al (2014) PLUMED 2: new feathers for an old bird. Comput Phys Commun 185:604–613. https://doi.org/10.1016/j.cpc.2013.09.018

    Article  CAS  Google Scholar 

  58. Bonomi M, Branduardi D, Bussi G et al (2009) PLUMED: a portable plugin for free-energy calculations with molecular dynamics. Comput Phys Commun 180:1961–1972. https://doi.org/10.1016/j.cpc.2009.05.011

    Article  CAS  Google Scholar 

  59. Yesylevskyy SO, Schäfer LV, Sengupta D, Marrink SJ (2010) Polarizable water model for the coarse-grained MARTINI force field. PLoS Comput Biol 6:1–17. https://doi.org/10.1371/journal.pcbi.1000810

    Article  CAS  Google Scholar 

  60. Arnarez C, Uusitalo JJ, Masman MF et al (2015) Dry martini, a coarse-grained force field for lipid membrane simulations with implicit solvent. J Chem Theory Comput 11:260–275. https://doi.org/10.1021/ct500477k

    Article  CAS  PubMed  Google Scholar 

  61. Periole X, Cavalli M, Marrink S-J, Ceruso MA (2009) Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition. J Chem Theory Comput 5:2531–2543. https://doi.org/10.1021/ct9002114

    Article  CAS  PubMed  Google Scholar 

  62. Alessandri R, Souza PCT, Thallmair S et al (2019) Pitfalls of the martini model. J Chem Theory Comput 15:5448–5460. https://doi.org/10.1021/acs.jctc.9b00473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Klesse G, Rao S, Tucker SJ, Sansom MSP (2020) Induced polarization in molecular dynamics simulations of the 5-HT3 receptor channel. J Am Chem Soc 142:9415–9427. https://doi.org/10.1021/jacs.0c02394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Corey R, Song W, Duncan A et al (2021) Identification and assessment of cardiolipin interactions with E. coli inner membrane proteins. BioRxiv. https://doi.org/10.1101/2021.03.19.436130

Download references

Acknowledgments

The authors thank Drs Anna Duncan, Wanling Song, and Owen Vickery for critical reading and useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin A. Corey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Corey, R.A., Sansom, M.S.P., Stansfeld, P.J. (2021). Identification and Characterization of Specific Protein–Lipid Interactions Using Molecular Simulation. In: Moreira, I.S., Machuqueiro, M., Mourão, J. (eds) Computational Design of Membrane Proteins. Methods in Molecular Biology, vol 2315. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1468-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1468-6_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1467-9

  • Online ISBN: 978-1-0716-1468-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics