Skip to main content

Integrating Membrane Transporter Proteins into Droplet Interface Bilayers

  • Protocol
  • First Online:
Computational Design of Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2315))

Abstract

Droplet interface bilayers (DIBs) are an emerging tool within synthetic biology that aims to recreate biological processes in artificial cells. A critical component for the utility of these bilayers is controlled flow between compartments and, notably, uphill transport against a substrate concentration gradient. A versatile method to achieve the desired flow is to exploit the specificity of membrane proteins that regulate the movement of ions and transport of specific metabolic compounds. Methods have been in existence for some time to synthesize proteins within a droplet as well as incorporate membrane proteins into DIBS; however, there have been few reports combining synthesis and DIB incorporation for membrane transporters that demonstrate specific, uphill transport. This chapter presents two methods for the incorporation of a membrane transporter into a simple two-droplet DIB system, with the downhill and uphill transport reaction readily monitored by fluorescence microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kurihara K, Tamura M, Shohda K et al (2011) Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA. Nat Chem 3(10):775–781. https://doi.org/10.1038/nchem.1127

    Article  CAS  PubMed  Google Scholar 

  2. Peters RJRW, Marguet M, Marais S et al (2014) Cascade reactions in multicompartmentalized polymersomes. Angew Chem Int Ed Engl 53(1):146–150. https://doi.org/10.1002/anie.201308141

    Article  CAS  PubMed  Google Scholar 

  3. Bayley H, Cronin B, Heron A et al (2008) Droplet interface bilayers. Mol BioSyst 4(12):1191–1208. https://doi.org/10.1039/b808893d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Leptihn S, Castell OK, Cronin B et al (2013) Constructing droplet interface bilayers from the contact of aqueous droplets in oil. Nat Protoc 8(6):1048–1057. https://doi.org/10.1038/nprot.2013.061

    Article  CAS  PubMed  Google Scholar 

  5. Findlay HE, Harris NJ, Booth PJ (2016) In vitro synthesis of a major facilitator transporter for specific active transport across droplet interface bilayers. Sci Rep 6:39349. https://doi.org/10.1038/srep39349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carreras P, Law RV, Brooks N et al (2014) Microfluidic generation of droplet interface bilayer networks incorporating real-time size sorting in linear and non-linear configurations. Biomicrofluidics 8(5):054113. https://doi.org/10.1063/1.4897495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Villar G, Graham AD, Bayley H (2013) A tissue-like printed material. Science 340(6128):48–52. https://doi.org/10.1126/science.1229495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Haylock S, Friddin MS, Hindley JW et al (2020) Membrane protein mediated bilayer communication in networks of droplet interface bilayers. Commun Chem 3(1):77. https://doi.org/10.1038/s42004-020-0322-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Holden MA, Needham D, Bayley H (2007) Functional bionetworks from nanoliter water droplets. J Am Chem Soc 129(27):8650–8655. https://doi.org/10.1021/ja072292a

    Article  CAS  PubMed  Google Scholar 

  10. Elfaramawy MA, Fujii S, Uyeda A et al (2018) Quantitative analysis of cell-free synthesized membrane proteins at the stabilized droplet interface bilayer. Chem Commun 54(86):12226–12229. https://doi.org/10.1039/c8cc06804f

    Article  CAS  Google Scholar 

  11. Venkatesan GA, Lee J, Farimani AB et al (2015) Adsorption kinetics dictate mono layer self-assembly for both lipid-in and lipid-out approaches to droplet Interface bilayer formation. Langmuir 31(47):12883–12893. https://doi.org/10.1021/acs.langmuir.5b02293

    Article  CAS  PubMed  Google Scholar 

  12. Hwang WL, Chen M, Cronin B et al (2008) Asymmetric droplet interface bilayers. J Am Chem Soc 130(18):5878–5879. https://doi.org/10.1021/ja802089s

    Article  CAS  PubMed  Google Scholar 

  13. Syeda R, Holden MA, Hwang WL et al (2008) Screening blockers against a potassium channel with a droplet interface bilayer array. J Am Chem Soc 130(46):15543–15548. https://doi.org/10.1021/ja804968g

    Article  CAS  PubMed  Google Scholar 

  14. Booth MJ, Schild VR, Graham AD et al (2016) Light-activated communication in synthetic tissues. Sci Adv 2(4):e1600056. https://doi.org/10.1126/sciadv.1600056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kaback HR, Smirnova I, Kasho V et al (2011) The alternating access transport mechanism in LacY. J Membr Biol 239(1–2):85–93. https://doi.org/10.1007/s00232-010-9327-5

    Article  CAS  PubMed  Google Scholar 

  16. Miller D, Booth PJ, Seddon JM et al (2013) Protocell design through modular compartmentalization. J R Soc Interface 10(87):20130496. https://doi.org/10.1098/rsif.2013.0496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dowhan W, Bogdanov M (2011) Lipid-protein interactions as determinants of membrane protein structure and function. Biochem Soc Trans 39(3):767–774. https://doi.org/10.1042/BST0390767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vitrac H, Bogdanov M, Dowhan W (2013) In vitro reconstitution of lipid-dependent dual topology and postassembly topological switching of a membrane protein. Proc Natl Acad Sci 110(23):9338–9343. https://doi.org/10.1073/pnas.1304375110

    Article  PubMed  PubMed Central  Google Scholar 

  19. Allen-Benton M, Findlay HE, Booth PJ (2019) Probing membrane protein properties using droplet interface bilayers. Exp Biol Med (Maywood) 244(8):709–720. https://doi.org/10.1177/1535370219847939

    Article  CAS  Google Scholar 

  20. Findlay HE, Booth PJ (2017) The folding, stability and function of lactose permease differ in their dependence on bilayer lipid composition. Sci Rep 7(1):13056. https://doi.org/10.1038/s41598-017-13290-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sandermann H Jr (1977) beta-D-Galactoside transport in Escherichia coli: substrate recognition. Eur J Biochem 80(2):507–515. https://doi.org/10.1111/j.1432-1033.1977.tb11906.x

    Article  CAS  PubMed  Google Scholar 

  22. Harris NJ, Findlay HE, Simms J et al (2014) Relative domain folding and stability of a membrane transport protein. J Mol Biol 426(8):1812–1825. https://doi.org/10.1016/j.jmb.2014.01.012

    Article  CAS  PubMed  Google Scholar 

  23. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675. https://doi.org/10.1038/nmeth.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dubois M, Gilles KA, Hamilton JK et al (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  25. Markwell MAK, Haas SM, Bieber LL et al (1978) Modification of Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87(1):206–210. https://doi.org/10.1016/0003-2697(78)90586-9

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula J. Booth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Findlay, H.E., Harris, N.J., Booth, P.J. (2021). Integrating Membrane Transporter Proteins into Droplet Interface Bilayers. In: Moreira, I.S., Machuqueiro, M., Mourão, J. (eds) Computational Design of Membrane Proteins. Methods in Molecular Biology, vol 2315. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1468-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1468-6_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1467-9

  • Online ISBN: 978-1-0716-1468-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics