Skip to main content

Guardians of the Cell: State-of-the-Art of Membrane Proteins from a Computational Point-of-View

Part of the Methods in Molecular Biology book series (MIMB,volume 2315)

Abstract

Membrane proteins (MPs) encompass a large family of proteins with distinct cellular functions, and although representing over 50% of existing pharmaceutical drug targets, their structural and functional information is still very scarce. Over the last years, in silico analysis and algorithm development were essential to characterize MPs and overcome some limitations of experimental approaches. The optimization and improvement of these methods remain an ongoing process, with key advances in MPs’ structure, folding, and interface prediction being continuously tackled. Herein, we discuss the latest trends in computational methods toward a deeper understanding of the atomistic and mechanistic details of MPs.

Key words

  • Membrane proteins
  • Computational methods
  • Interfaces
  • Molecular dynamics
  • Machine learning
  • Sequence–structure–function Prediction

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-1468-6_1
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-1468-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Luckey M (2016) Chapter 1. Introduction to the structural biology of membrane proteins. In: Domene C (ed) Computational biophysics of membrane proteins. Royal Society of Chemistry, Cambridge, pp 1–18

    Google Scholar 

  2. Gong J, Chen Y, Pu F et al (2019) Understanding membrane protein drug targets in computational perspective. Curr Drug Targets 20:551–564

    CAS  PubMed  CrossRef  Google Scholar 

  3. Nugent T, Jones D, Hayat S (2017) Advances in computational methods for Transmembrane protein structure prediction. In: Rigden DJ (ed) From protein structure to function with bioinformatics. Springer Netherlands, Dordrecht, pp 135–165

    CrossRef  Google Scholar 

  4. Nwamba OC (2020) Membranes as the third genetic code. Mol Biol Rep 47:4093–4097

    CAS  PubMed  CrossRef  Google Scholar 

  5. Fuxreiter M (2018) Towards a stochastic paradigm: from fuzzy ensembles to cellular functions. Molecules 23:3008

    PubMed Central  CrossRef  CAS  Google Scholar 

  6. Monje-Galvan V, Klauda JB (2016) Peripheral membrane proteins: tying the knot between experiment and computation. Biochim Biophys Acta 1858:1584–1593

    CAS  PubMed  CrossRef  Google Scholar 

  7. Whited AM, Johs A (2015) The interactions of peripheral membrane proteins with biological membranes. Chem Phys Lipids 192:51–59

    CAS  PubMed  CrossRef  Google Scholar 

  8. Raj NN, Mahalekshmi T (2018) Multilabel classification of membrane protein in human by decision tree (DT) approach. Biomed Pharmacol J 11:113–121

    CAS  CrossRef  Google Scholar 

  9. Nugent T, Jones DT (2009) Transmembrane protein topology prediction using support vector machines. BMC Bioinformatics 10:1–11

    CrossRef  CAS  Google Scholar 

  10. Yin H, Flynn AD (2016) Drugging membrane protein interactions. Annu Rev Biomed Eng 18:51–76

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  11. Pedro AQ, Queiroz JA, Passarinha LA (2019) Smoothing membrane protein structure determination by initial upstream stage improvements. Appl Microbiol Biotechnol 103:5483–5500

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  12. Almeida JG, Preto AJ, Koukos PI et al (2017) Membrane proteins structures: a review on computational modeling tools. Biochim Biophys Acta Biomembr 1859:2021–2039

    CAS  PubMed  CrossRef  Google Scholar 

  13. Yin X, Yang J, Xiao F et al (2018) MemBrain: an easy-to-use online webserver for Transmembrane protein structure prediction. Nanomicro Lett 10:2

    PubMed  Google Scholar 

  14. Liang B, Tamm LK (2016) NMR as a tool to investigate the structure, dynamics and function of membrane proteins. Nat Struct Mol Biol 23:468–474

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  15. Seeger MA (2018) Membrane transporter research in times of countless structures. Biochim Biophys Acta Biomembr 1860:804–808

    CAS  PubMed  CrossRef  Google Scholar 

  16. UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–D515

    CrossRef  CAS  Google Scholar 

  17. Shimizu K, Cao W, Saad G et al (2018) Comparative analysis of membrane protein structure databases. Biochim Biophys Acta Biomembr 1860:1077–1091

    CAS  PubMed  CrossRef  Google Scholar 

  18. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  19. Kim M-S, Yi G-S (2013) HMPAS: human membrane protein analysis system. Proteome Sci 11:S7

    PubMed  PubMed Central  CrossRef  Google Scholar 

  20. Pándy-Szekeres G, Munk C, Tsonkov TM et al (2018) GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids Res 46:D440–D446

    PubMed  CrossRef  CAS  Google Scholar 

  21. Tsirigos KD, Bagos PG, Hamodrakas SJ (2011) OMPdb: a database of {beta}-barrel outer membrane proteins from Gram-negative bacteria. Nucleic Acids Res 39:D324–D331

    CAS  PubMed  CrossRef  Google Scholar 

  22. Gromiha MM, Ou Y-Y (2014) Bioinformatics approaches for functional annotation of membrane proteins. Brief Bioinform 15:155–168

    CAS  PubMed  CrossRef  Google Scholar 

  23. Elbourne LDH, Tetu SG, Hassan KA, Paulsen IT (2017) TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Res 45:D320–D324

    CAS  PubMed  CrossRef  Google Scholar 

  24. White SH (2009) Biophysical dissection of membrane proteins. Nature 459:344–346

    CAS  PubMed  CrossRef  Google Scholar 

  25. Lomize MA, Lomize AL, Pogozheva ID, Mosberg HI (2006) OPM: orientations of proteins in membranes database. Bioinformatics 22:623–625

    CAS  PubMed  CrossRef  Google Scholar 

  26. Tusnady GE, Dosztanyi Z, Simon I (2004) Transmembrane proteins in the Protein Data Bank: identification and classification. Bioinformatics 20:2964–2972

    CAS  PubMed  CrossRef  Google Scholar 

  27. Kozma D, Simon I, Tusnády GE (2012) PDBTM: Protein Data Bank of transmembrane proteins after 8 years. Nucleic Acids Res 41:D524–D529

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  28. Fox NK, Brenner SE, Chandonia J-M (2014) SCOPe: structural classification of proteins—extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acids Res 42:D304–D309

    CAS  PubMed  CrossRef  Google Scholar 

  29. Nastou KC, Tsaousis GN, Iconomidou VA (2020) PerMemDB: a database for eukaryotic peripheral membrane proteins. Biochim Biophys Acta Biomembr 1862:183076

    CAS  PubMed  CrossRef  Google Scholar 

  30. Lomize AL, Hage JM, Pogozheva ID (2018) Membranome 2.0: database for proteome-wide profiling of bitopic proteins and their dimers. Bioinformatics 34:1061–1062

    CAS  PubMed  CrossRef  Google Scholar 

  31. Saier MH Jr, Reddy VS, Tsu BV et al (2016) The transporter classification database (TCDB): recent advances. Nucleic Acids Res 44:D372–D379

    CAS  PubMed  CrossRef  Google Scholar 

  32. Andreeva A, Howorth D, Chothia C et al (2014) SCOP2 prototype: a new approach to protein structure mining. Nucleic Acids Res 42:D310–D314

    CAS  PubMed  CrossRef  Google Scholar 

  33. Andreeva A, Kulesha E, Gough J, Murzin AG (2020) The SCOP database in 2020: expanded classification of representative family and superfamily domains of known protein structures. Nucleic Acids Res 48:D376–D382

    CAS  PubMed  CrossRef  Google Scholar 

  34. Poluri KM, Gulati K (2017) World of proteins: structure-function relationships and engineering techniques. In: Poluri KM, Gulati K (eds) Protein engineering techniques. Springer Singapore, Singapore, pp 1–25

    CrossRef  Google Scholar 

  35. Huang P-S, Boyken SE, Baker D (2016) The coming of age of de novo protein design. Nature 537:320–327

    CAS  PubMed  CrossRef  Google Scholar 

  36. Koehler Leman J, Ulmschneider MB, Gray JJ (2015) Computational modeling of membrane proteins. Proteins 83:1–24

    CAS  PubMed  CrossRef  Google Scholar 

  37. Latek D, Trzaskowski B, Niewieczerzał S et al (2019) Modeling of membrane proteins: from bioinformatics to molecular quantum mechanics. In: Liwo A (ed) Computational methods to study the structure and dynamics of biomolecules and biomolecular processes. Springer International Publishing, Cham, pp 371–451

    CrossRef  Google Scholar 

  38. Moult J, Fidelis K, Kryshtafovych A et al (2014) Critical assessment of methods of protein structure prediction (CASP)--round x. Proteins 82(Suppl 2):1–6

    CAS  PubMed  CrossRef  Google Scholar 

  39. Muhammed MT, Aki-Yalcin E (2019) Homology modeling in drug discovery: overview, current applications, and future perspectives. Chem Biol Drug Des 93:12–20

    CAS  PubMed  CrossRef  Google Scholar 

  40. Kaczanowski S, Zielenkiewicz P (2010) Why similar protein sequences encode similar three-dimensional structures? Theor Chem Accounts 125:643–650

    CAS  CrossRef  Google Scholar 

  41. Müller T, Rahmann S, Rehmsmeier M (2001) Non-symmetric score matrices and the detection of homologous transmembrane proteins. Bioinformatics 17(Suppl 1):S182–S189

    PubMed  CrossRef  Google Scholar 

  42. Ng PC, Henikoff JG, Henikoff S (2000) PHAT: a transmembrane-specific substitution matrix. Predicted hydrophobic and transmembrane. Bioinformatics 16:760–766

    CAS  PubMed  CrossRef  Google Scholar 

  43. Wang S, Fei S, Wang Z et al (2019) PredMP: a web server for de novo prediction and visualization of membrane proteins. Bioinformatics 35:691–693

    CAS  PubMed  CrossRef  Google Scholar 

  44. Kelm S, Shi J, Deane CM (2010) MEDELLER: homology-based coordinate generation for membrane proteins. Bioinformatics 26:2833–2840

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  45. Ebejer J-P, Hill JR, Kelm S et al (2013) Memoir: template-based structure prediction for membrane proteins. Nucleic Acids Res 41:W379–W383

    PubMed  PubMed Central  CrossRef  Google Scholar 

  46. Webb B, Sali A (2016) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics 54:5.6.1–5.6.37

    Google Scholar 

  47. Tabassum A, Rajeshwari T, Soni N et al (2014) Structural characterization and mutational assessment of podocin - a novel drug target to nephrotic syndrome - an in silico approach. Interdiscip Sci 6:32–39

    CAS  PubMed  CrossRef  Google Scholar 

  48. Choi Y, Deane CM (2010) FREAD revisited: accurate loop structure prediction using a database search algorithm. Proteins 78:1431–1440

    CAS  PubMed  CrossRef  Google Scholar 

  49. Miszta P, Pasznik P, Jakowiecki J et al (2018) GPCRM: a homology modeling web service with triple membrane-fitted quality assessment of GPCR models. Nucleic Acids Res 46:W387–W395

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  50. Kryshtafovych A, Schwede T, Topf M et al (2019) Critical assessment of methods of protein structure prediction (CASP)-round XIII. Proteins 87:1011–1020

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  51. Xu J, Wang S (2019) Analysis of distance-based protein structure prediction by deep learning in CASP13. Proteins 87:1069–1081

    CAS  PubMed  CrossRef  Google Scholar 

  52. Wang S, Li Z, Yu Y, Xu J (2017) Folding membrane proteins by deep transfer learning. Cell Syst 5:202–211.e3

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  53. Yang J, Shen H-B (2018) MemBrain-contact 2.0: a new two-stage machine learning model for the prediction enhancement of transmembrane protein residue contacts in the full chain. Bioinformatics 34:230–238

    CAS  PubMed  CrossRef  Google Scholar 

  54. Senior AW, Evans R, Jumper J et al (2020) Improved protein structure prediction using potentials from deep learning. Nature 577:706–710

    CAS  PubMed  CrossRef  Google Scholar 

  55. AlQuraishi M (2019) End-to-End Differentiable Learning of Protein Structure. Cell Syst 8:292–301.e3

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  56. Pellowe GA, Booth PJ (2020) Structural insight into co-translational membrane protein folding. Biochim Biophys Acta Biomembr 1862:183019

    CAS  PubMed  CrossRef  Google Scholar 

  57. Wang S, Li W, Liu S, Xu J (2016) RaptorX-property: a web server for protein structure property prediction. Nucleic Acids Res 44:W430–W435

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  58. Wang S, Peng J, Ma J, Xu J (2016) Protein secondary structure prediction using deep convolutional neural fields. Sci Rep 6:18962

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  59. Seemayer S, Gruber M, Söding J (2014) CCMpred--fast and precise prediction of protein residue-residue contacts from correlated mutations. Bioinformatics 30:3128–3130

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  60. Brünger AT, Adams PD, Clore GM et al (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921

    PubMed  CrossRef  Google Scholar 

  61. Cheung NJ, Yu W (2019) Sibe: a computation tool to apply protein sequence statistics to predict folding and design in silico. BMC Bioinformatics 20:455

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  62. Kharche SA, Sengupta D (2020) Dynamic protein interfaces and conformational landscapes of membrane protein complexes. Curr Opin Struct Biol 61:191–197

    CAS  PubMed  CrossRef  Google Scholar 

  63. Zeng B, Hönigschmid P, Frishman D (2019) Residue co-evolution helps predict interaction sites in α-helical membrane proteins. J Struct Biol 206:156–169

    CAS  PubMed  CrossRef  Google Scholar 

  64. Murakami Y, Mizuguchi K (2010) Applying the Naïve Bayes classifier with kernel density estimation to the prediction of protein-protein interaction sites. Bioinformatics 26:1841–1848

    CAS  PubMed  CrossRef  Google Scholar 

  65. Lu C, Liu Z, Zhang E et al (2019) MPLs-Pred: predicting membrane protein-ligand binding sites using hybrid sequence-based features and ligand-specific models. Int J Mol Sci 20:3120

    CAS  PubMed Central  CrossRef  Google Scholar 

  66. Nemoto W, Fukui K, Toh H (2009) GRIP: a server for predicting interfaces for GPCR oligomerization. J Recept Signal Transduct Res 29:312–317

    CAS  PubMed  CrossRef  Google Scholar 

  67. Nemoto W, Yamanishi Y, Limviphuvadh V et al (2016) GGIP: structure and sequence-based GPCR-GPCR interaction pair predictor. Proteins 84:1224–1233

    CAS  PubMed  CrossRef  Google Scholar 

  68. Saito A, Tsuchiya D, Sato S et al (2020) Update of the GRIP web service. J Recept Signal Transduct Res 40:348–356

    CAS  PubMed  CrossRef  Google Scholar 

  69. Hurwitz N, Schneidman-Duhovny D, Wolfson HJ (2016) Memdock: an α-helical membrane protein docking algorithm. Bioinformatics 32:2444–2450

    CAS  PubMed  CrossRef  Google Scholar 

  70. Halperin I, Ma B, Wolfson H, Nussinov R (2002) Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins 47:409–443

    CAS  PubMed  CrossRef  Google Scholar 

  71. Pagadala NS, Syed K, Tuszynski J (2017) Software for molecular docking: a review. Biophys Rev 9:91–102

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  72. Kaczor AA, Selent J, Sanz F, Pastor M (2013) Modeling complexes of Transmembrane proteins: systematic analysis of protein–protein docking tools. Mol Inform 32:717–733

    CAS  PubMed  CrossRef  Google Scholar 

  73. Chen R, Li L, Weng Z (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins 52:80–87

    CAS  PubMed  CrossRef  Google Scholar 

  74. Alekseenko A, Ignatov M, Jones G et al (2020) Protein-protein and protein-peptide docking with ClusPro server. Methods Mol Biol 2165:157–174

    CAS  PubMed  CrossRef  Google Scholar 

  75. Ghoorah AW, Devignes M-D, Smaïl-Tabbone M, Ritchie DW (2013) Protein docking using case-based reasoning. Proteins 81:2150–2158

    CAS  PubMed  CrossRef  Google Scholar 

  76. Tovchigrechko A, Vakser IA (2005) Development and testing of an automated approach to protein docking. Proteins 60:296–301

    CAS  PubMed  CrossRef  Google Scholar 

  77. Duhovny D, Nussinov R, Wolfson HJ (2002) Efficient unbound docking of rigid molecules. In: Guigó R, Gusfield D (eds) Algorithms in bioinformatics. Springer, Berlin, pp 185–200

    CrossRef  Google Scholar 

  78. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) Geometry-based flexible and symmetric protein docking. Proteins 60:224–231

    CAS  PubMed  CrossRef  Google Scholar 

  79. Dominguez C, Boelens R, Bonvin AMJJ (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737

    CAS  PubMed  CrossRef  Google Scholar 

  80. Koehler Leman J, Lyskov S, Bonneau R (2017) Computing structure-based lipid accessibility of membrane proteins with mp_lipid_acc in RosettaMP. BMC Bioinformatics 18:115

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  81. Koukos PI, Faro I, van Noort CW, Bonvin AMJJ (2018) A membrane protein complex docking benchmark. J Mol Biol 430:5246–5256

    CAS  PubMed  CrossRef  Google Scholar 

  82. Alford RF, Koehler Leman J, Weitzner BD et al (2015) An integrated framework advancing membrane protein modeling and design. PLoS Comput Biol 11:e1004398

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  83. Lensink MF, Wodak SJ (2014) Score_set: a CAPRI benchmark for scoring protein complexes. Proteins 82:3163–3169

    CAS  PubMed  CrossRef  Google Scholar 

  84. André I, Bradley P, Wang C, Baker D (2007) Prediction of the structure of symmetrical protein assemblies. Proc Natl Acad Sci U S A 104:17656–17661

    PubMed  PubMed Central  CrossRef  Google Scholar 

  85. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  86. Mashiach E, Nussinov R, Wolfson HJ (2010) FiberDock: a web server for flexible induced-fit backbone refinement in molecular docking. Nucleic Acids Res 38:W457–W461

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  87. Mashiach E, Nussinov R, Wolfson HJ (2010) FiberDock: flexible induced-fit backbone refinement in molecular docking. Proteins 78:1503–1519

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  88. van Zundert GCP, Rodrigues JPGLM, Trellet M et al (2016) The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol 428:720–725

    PubMed  CrossRef  CAS  Google Scholar 

  89. Goossens K, De Winter H (2018) Molecular dynamics simulations of membrane proteins: an overview. J Chem Inf Model 58:2193–2202

    CAS  PubMed  CrossRef  Google Scholar 

  90. Hospital A, Goñi R, Orozco M, Gelpi J (2015) Molecular dynamics simulations: advances and applications. Adv Appl Bioinform Chem 8:37–47

    PubMed  PubMed Central  Google Scholar 

  91. Alford RF, Smolin N, Young HS et al (2020) Protein docking and steered molecular dynamics suggest alternative phospholamban-binding sites on the SERCA calcium transporter. J Biol Chem 295:11262–11274

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  92. Im W, Brooks CL 3rd (2005) Interfacial folding and membrane insertion of designed peptides studied by molecular dynamics simulations. Proc Natl Acad Sci U S A 102:6771–6776

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  93. Kargar F, Emadi S, Fazli H (2020) Dimerization of Aβ40 inside dipalmitoylphosphatidylcholine bilayer and its effect on bilayer integrity: atomistic simulation at three temperatures. Proteins 88(11):1540–1552

    CAS  PubMed  CrossRef  Google Scholar 

  94. Dhusia K, Su Z, Wu Y (2020) Understanding the impacts of conformational dynamics on the regulation of protein-protein association by a multiscale simulation method. J Chem Theory Comput 16:5323–5333

    CAS  PubMed  CrossRef  Google Scholar 

  95. Radwan A, Mahrous GM (2020) Docking studies and molecular dynamics simulations of the binding characteristics of waldiomycin and its methyl ester analog to Staphylococcus aureus histidine kinase. PLoS One 15:e0234215

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  96. Goose JE, Sansom MSP (2013) Reduced lateral mobility of lipids and proteins in crowded membranes. PLoS Comput Biol 9:e1003033

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  97. Fagnen C, Bannwarth L, Oubella I et al (2020) New structural insights into Kir channel gating from molecular simulations, HDX-MS and functional studies. Sci Rep 10:8392

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  98. Jenkins K, Mateeva T, Szabó I et al (2020) Combining data integration and molecular dynamics for target identification in α-Synuclein-aggregating neurodegenerative diseases: structural insights on Synaptojanin-1 (Synj1). Comput Struct Biotechnol J 18:1032–1042

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  99. Adam Hospital, Goñi JR, Orozco M, Gelpí JL (2015) Molecular dynamics simulations: advances and applications. Adv Appl Bioinform Chem 8:37

    PubMed  PubMed Central  Google Scholar 

  100. Niesen MJM, Zimmer MH, Miller TF 3rd (2020) Dynamics of co-translational membrane protein integration and translocation via the sec translocon. J Am Chem Soc 142:5449–5460

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  101. Lee Y, Lazim R, Macalino SJY, Choi S (2019) Importance of protein dynamics in the structure-based drug discovery of class A G protein-coupled receptors (GPCRs). Curr Opin Struct Biol 55:147–153

    CAS  PubMed  CrossRef  Google Scholar 

  102. Venko K, Roy Choudhury A, Novič M (2017) Computational approaches for revealing the structure of membrane transporters: case study on bilitranslocase. Comput Struct Biotechnol J 15:232–242

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  103. Harpole TJ, Delemotte L (2018) Conformational landscapes of membrane proteins delineated by enhanced sampling molecular dynamics simulations. Biochim Biophys Acta Biomembr 1860:909–926

    CAS  PubMed  CrossRef  Google Scholar 

  104. Zheng L, Alhossary AA, Kwoh C-K, Mu Y (2019) Molecular dynamics and simulation. In: Encyclopedia of bioinformatics and computational biology. Elsevier, Amsterdam, pp 550–566

    CrossRef  Google Scholar 

  105. Ferreira RJ, Kasson PM (2019) Antibiotic uptake across gram-negative outer membranes: better predictions towards better antibiotics. ACS Infect Dis 5:2096–2104

    CAS  PubMed  CrossRef  Google Scholar 

  106. Corey RA, Stansfeld PJ, Sansom MSP (2020) The energetics of protein–lipid interactions as viewed by molecular simulations. Biochem Soc Trans 48:25

    CAS  PubMed  CrossRef  Google Scholar 

  107. Dutagaci B, Heo L, Feig M (2018) Structure refinement of membrane proteins via molecular dynamics simulations. Proteins 86:738–750

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  108. Loschwitz J, Olubiyi OO, Hub JS et al (2020) Computer simulations of protein–membrane systems. Prog Mol Biol Transl Sci 170:273

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  109. Kästner J (2011) Umbrella sampling. WIREs Comput Mol Sci 1:932–942

    CrossRef  CAS  Google Scholar 

  110. Barducci A, Bonomi M, Parrinello M (2011) Metadynamics. WIREs Comput Mol Sci 1:826–843

    CAS  CrossRef  Google Scholar 

  111. Ibrahim P, Clark T (2019) Metadynamics simulations of ligand binding to GPCRs. Curr Opin Struct Biol 55:129–137

    CAS  PubMed  CrossRef  Google Scholar 

  112. Domański J, Hedger G, Best RB et al (2017) Convergence and sampling in determining free energy landscapes for membrane protein association. J Phys Chem B 121:3364–3375

    PubMed  CrossRef  CAS  Google Scholar 

  113. Shiref H, Bergman S, Clivio S, Sahai MA (2020) The fine art of preparing membrane transport proteins for biomolecular simulations: concepts and practical considerations. Methods S1046-2023:30215-4

    Google Scholar 

  114. Marrink SJ, Corradi V, Souza PCT et al (2019) Computational modeling of realistic cell membranes. Chem Rev 119:6184–6226

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  115. Sandoval-Perez A, Pluhackova K, Böckmann RA (2017) Critical comparison of biomembrane force fields: protein-lipid interactions at the membrane interface. J Chem Theory Comput 13:2310–2321

    CAS  PubMed  CrossRef  Google Scholar 

  116. Mustafa G, Nandekar PP, Mukherjee G et al (2020) The effect of force-field parameters on cytochrome P450-membrane interactions: structure and dynamics. Sci Rep 10:7284

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  117. Srivastava A, Nagai T, Srivastava A et al (2018) Role of computational methods in going beyond X-ray crystallography to explore protein structure and dynamics. Int J Mol Sci 19:3401

    PubMed Central  CrossRef  CAS  Google Scholar 

  118. Dhingra S, Sowdhamini R, Cadet F, Offmann B (2020) A glance into the evolution of template-free protein structure prediction methodologies. Biochimie 175:85–92

    CAS  PubMed  CrossRef  Google Scholar 

  119. Leelananda SP, Lindert S (2017) Iterative molecular dynamics-Rosetta membrane protein structure refinement guided by Cryo-EM densities. J Chem Theory Comput 13:5131–5145

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  120. Oakes V, Domene C (2019) Combining structural data with computational methodologies to investigate structure-function relationships in TRP channels. Methods Mol Biol 1987:65–82

    CAS  PubMed  CrossRef  Google Scholar 

  121. Sanders CR, Mittendorf KF (2011) Tolerance to changes in membrane lipid composition as a selected trait of membrane proteins. Biochemistry 50:7858–7867

    CAS  PubMed  CrossRef  Google Scholar 

  122. Doktorova M, Weinstein H (2018) Accurate in silico modeling of asymmetric bilayers based on biophysical principles. Biophys J 115:1638–1643

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  123. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29:1859–1865

    CAS  PubMed  CrossRef  Google Scholar 

  124. Wassenaar TA, Ingólfsson HI, Böckmann RA et al (2015) Computational lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. J Chem Theory Comput 11:2144–2155

    CAS  PubMed  CrossRef  Google Scholar 

  125. Wolf MG, Hoefling M, Aponte-Santamaría C et al (2010) g_membed: efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation. J Comput Chem 31:2169–2174

    CAS  PubMed  CrossRef  Google Scholar 

  126. Wassenaar TA, Pluhackova K, Böckmann RA et al (2014) Going backward: a flexible geometric approach to reverse transformation from coarse grained to atomistic models. J Chem Theory Comput 10:676–690

    CAS  PubMed  CrossRef  Google Scholar 

  127. Newport TD, Sansom MSP, Stansfeld PJ (2019) The MemProtMD database: a resource for membrane-embedded protein structures and their lipid interactions. Nucleic Acids Res 47:D390–D397

    CAS  PubMed  CrossRef  Google Scholar 

  128. Stansfeld PJ, Goose JE, Caffrey M et al (2015) MemProtMD: automated insertion of membrane protein structures into explicit lipid membranes. Structure 23:1350–1361

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  129. Chitrak Gupta BM (2017) Protonation enhances the inherent helix-forming propensity of pHLIP. ACS Omega 2:8536

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  130. Pallante L, Rocca A, Klejborowska G et al (2020) In silico investigations of the mode of action of novel colchicine derivatives targeting β-tubulin Isotypes: a search for a selective and specific β-III tubulin ligand. Front Chem 8:108

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  131. Im W, Roux B (2002) Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, brownian dynamics, and continuum electrodiffusion theory. J Mol Biol 322:851–869

    CAS  PubMed  CrossRef  Google Scholar 

  132. Gupta C, Ren Y, Mertz B (2018) Cooperative nonbonded forces control membrane binding of the pH-low insertion peptide pHLIP. Biophys J 115:2403

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  133. Mertz B, Feng J, Corcoran C, Neeley B (2015) Explaining the mobility of retinal in activated rhodopsin and opsin. Photochem Photobiol Sci 14:1952–1964

    CAS  PubMed  CrossRef  Google Scholar 

  134. Faramarzi S, Feng J, Mertz B (2018) Allosteric effects of the proton donor on the microbial proton pump proteorhodopsin. Biophys J 115:1240

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  135. Liu Y, Haddadian E, Sosnick TR et al (2013) A novel implicit solvent model for simulating the molecular dynamics of RNA. Biophys J 105:1248–1257

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  136. Lazaridis T (2003) Effective energy function for proteins in lipid membranes. Proteins 52:176–192

    CAS  PubMed  CrossRef  Google Scholar 

  137. Laradji M, Sunil Kumar PB, Spangler EJ (2016) Exploring large-scale phenomena in composite membranes through an efficient implicit-solvent model. J Phys D Appl Phys 49:293001

    CrossRef  CAS  Google Scholar 

  138. Kellici TF, Ntountaniotis D, Liapakis G et al (2019) The dynamic properties of angiotensin II type 1 receptor inverse agonists in solution and in the receptor site. Arab J Chem 12:5062–5078

    CAS  CrossRef  Google Scholar 

  139. Mizuhara Y, Parkin D, Umezawa K et al (2017) Over-destabilization of protein-protein interaction in generalized born model and utility of energy density integration cutoff. J Phys Chem B 121:4669–4677

    CAS  PubMed  CrossRef  Google Scholar 

  140. Ulmschneider MB, Ulmschneider JP, Sansom MSP, Di Nola A (2007) A generalized born implicit-membrane representation compared to experimental insertion free energies. Biophys J 92:2338–2349

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  141. Ulmschneider JP, Ulmschneider MB (2007) Folding simulations of the transmembrane helix of virus protein U in an implicit membrane model. J Chem Theory Comput 3:2335–2346

    CAS  PubMed  CrossRef  Google Scholar 

  142. Tanford C, Roxby R (1972) Interpretation of protein titration curves. Application to lysozyme. Biochemistry 11:2192–2198

    CAS  PubMed  CrossRef  Google Scholar 

  143. Singharoy A, Barragan AM, Thangapandian S et al (2016) Binding site recognition and docking dynamics of a single electron transport protein: cytochrome c2. J Am Chem Soc 138:12077–12089

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  144. Chen J, Brooks CL 3rd, Khandogin J (2008) Recent advances in implicit solvent-based methods for biomolecular simulations. Curr Opin Struct Biol 18:140–148

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  145. Jo S, Vargyas M, Vasko-Szedlar J et al (2008) PBEQ-solver for online visualization of electrostatic potential of biomolecules. Nucleic Acids Res 36:W270–W275

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  146. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 32:W665–W667

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  147. Mori T, Miyashita N, Im W et al (2016) Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms. Biochim Biophys Acta 1858:1635

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  148. Zacharias M (2013) Combining coarse-grained nonbonded and atomistic bonded interactions for protein modeling. Proteins 81:81–92

    CAS  PubMed  CrossRef  Google Scholar 

  149. Togashi Y, Flechsig H (2018) Coarse-grained protein dynamics studies using elastic network models. Int J Mol Sci 19:3899

    PubMed Central  CrossRef  CAS  Google Scholar 

  150. Fuglebakk E, Reuter N, Hinsen K (2013) Evaluation of protein elastic network models based on an analysis of collective motions. J Chem Theory Comput 9:5618–5628

    CAS  PubMed  CrossRef  Google Scholar 

  151. Dickson CJ, Madej BD, Skjevik AA et al (2014) Lipid14: the Amber lipid force field. J Chem Theory Comput 10:865–879

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  152. AMBAR 2020 Reference Manual. https://ambermd.org/doc12/Amber20.pdf. Accessed 10 July 2020

  153. Pieńko T, Trylska J (2020) Extracellular loops of BtuB facilitate transport of vitamin B12 through the outer membrane of E. coli. PLoS Comput Biol 16:e1008024

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  154. Perona A, Ros MP, Mills A et al (2020) Distinct binding of cetirizine enantiomers to human serum albumin and the human histamine receptor H. J Comput Aided Mol Des 34:1045–1106

    CAS  PubMed  CrossRef  Google Scholar 

  155. Guardia CM, Tan X-F, Lian T et al (2020) Structure of human ATG9A, the only transmembrane protein of the core autophagy machinery. Cell Rep 31:107837

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  156. CHARMM-GUI. http://www.charmm-gui.org/?doc=archive&lib=lipid. Accessed 10 July 2020

  157. Loney RW, Panzuela S, Chen J et al (2020) Location of the hydrophobic surfactant proteins, SP-B and SP-C, in fluid-phase bilayers. J Phys Chem B 124:6763–6774

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  158. Jahan Sajib MS, Wei Y, Mishra A et al (2020) Atomistic simulations of biofouling and molecular transfer of a cross-linked aromatic polyamide membrane for desalination. Langmuir 36:7658–7668

    CAS  PubMed  CrossRef  Google Scholar 

  159. Walczewska-Szewc K, Nowak W (2020) Structural determinants of insulin release: disordered N-terminal tail of Kir6.2 affects potassium channel dynamics through interactions with sulfonylurea binding region in a SUR1 partner. J Phys Chem B 124:6198–6211

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  160. Dos Santos EG, Faria RX, Rodrigues CR, Bello ML (2020) Molecular dynamic simulations of full-length human purinergic receptor subtype P2X7 bonded to potent inhibitors. Eur J Pharm Sci 152:105454

    PubMed  CrossRef  CAS  Google Scholar 

  161. Neumann LSM, Dias AHS, Skaf MS (2020) Molecular modeling of aquaporins from. J Phys Chem B 124:5825–5836

    CAS  PubMed  CrossRef  Google Scholar 

  162. Kwon B, Mandal T, Elkins MR et al (2020) Cholesterol interaction with the trimeric HIV fusion protein gp41 in lipid bilayers investigated by solid-state NMR spectroscopy and molecular dynamics simulations. J Mol Biol 432:4705–4721

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  163. Rojas G, Orellana I, Rosales-Rojas R et al (2020) Structural determinants of the dopamine transporter regulation mediated by G proteins. J Chem Inf Model 60:3577–3586

    CAS  PubMed  CrossRef  Google Scholar 

  164. Woo H, Park S-J, Choi YK et al (2020) Developing a fully glycosylated full-length SARS-CoV-2 spike protein model in a viral membrane. J Phys Chem B 124:7128–7137

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  165. Ruiz FM, Lopez J, Ferrara CG et al (2020) Structural characterization of TssL from:a key component of the type VI secretion system. J Bacteriol 202:e00210–e00220

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  166. Li H, Gorfe AA (2013) Aggregation of lipid-anchored full-length H-Ras in lipid bilayers: simulations with the MARTINI force field. PLoS One 8:e71018

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  167. Gopal SM, Pawar AB, Wassenaar TA, Sengupta D (2020) Lipid-dependent conformational landscape of the ErbB2 growth factor receptor dimers. Chem Phys Lipids 230:104911

    CAS  PubMed  CrossRef  Google Scholar 

  168. Prasanna X, Mohole M, Chattopadhyay A, Sengupta D (2020) Role of cholesterol-mediated effects in GPCR heterodimers. Chem Phys Lipids 227:104852

    CAS  PubMed  CrossRef  Google Scholar 

  169. Inakollu VS, Geerke DP, Rowley CN, Yu H (2020) Polarisable force fields: what do they add in biomolecular simulations? Curr Opin Struct Biol 61:182–190

    CAS  PubMed  CrossRef  Google Scholar 

  170. Abraham MJ, Murtola T, Schulz R et al (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2:19–25

    CrossRef  Google Scholar 

  171. Páll S, Abraham MJ, Kutzner C et al (2015) Tackling Exascale software challenges in molecular dynamics simulations with GROMACS. In: Markidis S, Laure E (eds) Solving software challenges for exascale. Springer International Publishing, Cham, pp 3–27

    Google Scholar 

  172. Phillips JC, Hardy DJ, Maia JDC et al (2020) Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys 153:044130

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  173. Brooks BR, Brooks CL 3rd, Mackerell AD Jr et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  174. Case DA, Belfon K, Ben-Shalom IY et al (2020) AMBER 2020. University of California, San Francisco

    Google Scholar 

  175. Patodia S (2014) Molecular dynamics simulation of proteins: a brief overview. J Phys Chem Biophys 4:6

    CrossRef  CAS  Google Scholar 

  176. Doktorova M, LeVine MV, Khelashvili G, Weinstein H (2019) A new computational method for membrane compressibility: bilayer mechanical thickness revisited. Biophys J 116:487–502

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  177. Ribeiro JV, Bernardi RC, Rudack T et al (2016) QwikMD - integrative molecular dynamics toolkit for novices and experts. Sci Rep 6:26536

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  178. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    CAS  PubMed  CrossRef  Google Scholar 

  179. Rodríguez-Espigares I, Torrens-Fontanals M, Tiemann JKS et al (2020) GPCRmd uncovers the dynamics of the 3D-GPCRome. Nat Methods 17:777–787

    PubMed  CrossRef  CAS  Google Scholar 

  180. Carrillo-Cabada H, Benson J, Razavi A, et al (2019) A graphic encoding method for quantitative classification of protein structure and representation of conformational changes. IEEE/ACM Trans Comput Biol Bioinform, In Press

    Google Scholar 

  181. Plante A, Shore DM, Morra G et al (2019) A machine learning approach for the discovery of ligand-specific functional mechanisms of GPCRs. Molecules 24(11):2097

    CAS  PubMed Central  CrossRef  Google Scholar 

Download references

Acknowledgments

This work was funded by COMPETE 2020—Operational Programme for Competitiveness and Internationalisation and Portuguese national funds via FCT—Fundação para a Ciência e a Tecnologia, under projects DSAIPA/DS/0118/2020, POCI-01-0145-FEDER-031356, PTDC/QUI-OUT/32243/2017, UIDB/04539/2020 and LA/P/0058/2020. The authors would also like to acknowledge ERNEST—European Research Network on Signal Transduction, CA18133, and STRATAGEM—New diagnostic and therapeutic tools against multidrug-resistant tumors, CA17104. Nícia Rosário-Ferreira and Catarina Marques-Pereira were also supported by FCT, through Ph.D. scholarships PD/BD/135179/2017 and 2020.07766.BD (DOCTORATES 4 COVID-19), respectively. Raquel Pina Gouveia was also supported by FCT and DGES—Direção Geral do Ensino Superior, through fellowship for Curso de Verão in “Metodologias de Investigação Científica”—Módulo de I&D “Metodologias Avançadas para o Estudo do Cérebro”, under the program “Verão com Ciência.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina S. Moreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Rosário-Ferreira, N., Marques-Pereira, C., Gouveia, R.P., Mourão, J., Moreira, I.S. (2021). Guardians of the Cell: State-of-the-Art of Membrane Proteins from a Computational Point-of-View. In: Moreira, I.S., Machuqueiro, M., Mourão, J. (eds) Computational Design of Membrane Proteins. Methods in Molecular Biology, vol 2315. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1468-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1468-6_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1467-9

  • Online ISBN: 978-1-0716-1468-6

  • eBook Packages: Springer Protocols