Luckey M (2016) Chapter 1. Introduction to the structural biology of membrane proteins. In: Domene C (ed) Computational biophysics of membrane proteins. Royal Society of Chemistry, Cambridge, pp 1–18
Google Scholar
Gong J, Chen Y, Pu F et al (2019) Understanding membrane protein drug targets in computational perspective. Curr Drug Targets 20:551–564
CAS
PubMed
CrossRef
Google Scholar
Nugent T, Jones D, Hayat S (2017) Advances in computational methods for Transmembrane protein structure prediction. In: Rigden DJ (ed) From protein structure to function with bioinformatics. Springer Netherlands, Dordrecht, pp 135–165
CrossRef
Google Scholar
Nwamba OC (2020) Membranes as the third genetic code. Mol Biol Rep 47:4093–4097
CAS
PubMed
CrossRef
Google Scholar
Fuxreiter M (2018) Towards a stochastic paradigm: from fuzzy ensembles to cellular functions. Molecules 23:3008
PubMed Central
CrossRef
CAS
Google Scholar
Monje-Galvan V, Klauda JB (2016) Peripheral membrane proteins: tying the knot between experiment and computation. Biochim Biophys Acta 1858:1584–1593
CAS
PubMed
CrossRef
Google Scholar
Whited AM, Johs A (2015) The interactions of peripheral membrane proteins with biological membranes. Chem Phys Lipids 192:51–59
CAS
PubMed
CrossRef
Google Scholar
Raj NN, Mahalekshmi T (2018) Multilabel classification of membrane protein in human by decision tree (DT) approach. Biomed Pharmacol J 11:113–121
CAS
CrossRef
Google Scholar
Nugent T, Jones DT (2009) Transmembrane protein topology prediction using support vector machines. BMC Bioinformatics 10:1–11
CrossRef
CAS
Google Scholar
Yin H, Flynn AD (2016) Drugging membrane protein interactions. Annu Rev Biomed Eng 18:51–76
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Pedro AQ, Queiroz JA, Passarinha LA (2019) Smoothing membrane protein structure determination by initial upstream stage improvements. Appl Microbiol Biotechnol 103:5483–5500
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Almeida JG, Preto AJ, Koukos PI et al (2017) Membrane proteins structures: a review on computational modeling tools. Biochim Biophys Acta Biomembr 1859:2021–2039
CAS
PubMed
CrossRef
Google Scholar
Yin X, Yang J, Xiao F et al (2018) MemBrain: an easy-to-use online webserver for Transmembrane protein structure prediction. Nanomicro Lett 10:2
PubMed
Google Scholar
Liang B, Tamm LK (2016) NMR as a tool to investigate the structure, dynamics and function of membrane proteins. Nat Struct Mol Biol 23:468–474
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Seeger MA (2018) Membrane transporter research in times of countless structures. Biochim Biophys Acta Biomembr 1860:804–808
CAS
PubMed
CrossRef
Google Scholar
UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–D515
CrossRef
CAS
Google Scholar
Shimizu K, Cao W, Saad G et al (2018) Comparative analysis of membrane protein structure databases. Biochim Biophys Acta Biomembr 1860:1077–1091
CAS
PubMed
CrossRef
Google Scholar
Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kim M-S, Yi G-S (2013) HMPAS: human membrane protein analysis system. Proteome Sci 11:S7
PubMed
PubMed Central
CrossRef
Google Scholar
Pándy-Szekeres G, Munk C, Tsonkov TM et al (2018) GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids Res 46:D440–D446
PubMed
CrossRef
CAS
Google Scholar
Tsirigos KD, Bagos PG, Hamodrakas SJ (2011) OMPdb: a database of {beta}-barrel outer membrane proteins from Gram-negative bacteria. Nucleic Acids Res 39:D324–D331
CAS
PubMed
CrossRef
Google Scholar
Gromiha MM, Ou Y-Y (2014) Bioinformatics approaches for functional annotation of membrane proteins. Brief Bioinform 15:155–168
CAS
PubMed
CrossRef
Google Scholar
Elbourne LDH, Tetu SG, Hassan KA, Paulsen IT (2017) TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Res 45:D320–D324
CAS
PubMed
CrossRef
Google Scholar
White SH (2009) Biophysical dissection of membrane proteins. Nature 459:344–346
CAS
PubMed
CrossRef
Google Scholar
Lomize MA, Lomize AL, Pogozheva ID, Mosberg HI (2006) OPM: orientations of proteins in membranes database. Bioinformatics 22:623–625
CAS
PubMed
CrossRef
Google Scholar
Tusnady GE, Dosztanyi Z, Simon I (2004) Transmembrane proteins in the Protein Data Bank: identification and classification. Bioinformatics 20:2964–2972
CAS
PubMed
CrossRef
Google Scholar
Kozma D, Simon I, Tusnády GE (2012) PDBTM: Protein Data Bank of transmembrane proteins after 8 years. Nucleic Acids Res 41:D524–D529
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Fox NK, Brenner SE, Chandonia J-M (2014) SCOPe: structural classification of proteins—extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acids Res 42:D304–D309
CAS
PubMed
CrossRef
Google Scholar
Nastou KC, Tsaousis GN, Iconomidou VA (2020) PerMemDB: a database for eukaryotic peripheral membrane proteins. Biochim Biophys Acta Biomembr 1862:183076
CAS
PubMed
CrossRef
Google Scholar
Lomize AL, Hage JM, Pogozheva ID (2018) Membranome 2.0: database for proteome-wide profiling of bitopic proteins and their dimers. Bioinformatics 34:1061–1062
CAS
PubMed
CrossRef
Google Scholar
Saier MH Jr, Reddy VS, Tsu BV et al (2016) The transporter classification database (TCDB): recent advances. Nucleic Acids Res 44:D372–D379
CAS
PubMed
CrossRef
Google Scholar
Andreeva A, Howorth D, Chothia C et al (2014) SCOP2 prototype: a new approach to protein structure mining. Nucleic Acids Res 42:D310–D314
CAS
PubMed
CrossRef
Google Scholar
Andreeva A, Kulesha E, Gough J, Murzin AG (2020) The SCOP database in 2020: expanded classification of representative family and superfamily domains of known protein structures. Nucleic Acids Res 48:D376–D382
CAS
PubMed
CrossRef
Google Scholar
Poluri KM, Gulati K (2017) World of proteins: structure-function relationships and engineering techniques. In: Poluri KM, Gulati K (eds) Protein engineering techniques. Springer Singapore, Singapore, pp 1–25
CrossRef
Google Scholar
Huang P-S, Boyken SE, Baker D (2016) The coming of age of de novo protein design. Nature 537:320–327
CAS
PubMed
CrossRef
Google Scholar
Koehler Leman J, Ulmschneider MB, Gray JJ (2015) Computational modeling of membrane proteins. Proteins 83:1–24
CAS
PubMed
CrossRef
Google Scholar
Latek D, Trzaskowski B, Niewieczerzał S et al (2019) Modeling of membrane proteins: from bioinformatics to molecular quantum mechanics. In: Liwo A (ed) Computational methods to study the structure and dynamics of biomolecules and biomolecular processes. Springer International Publishing, Cham, pp 371–451
CrossRef
Google Scholar
Moult J, Fidelis K, Kryshtafovych A et al (2014) Critical assessment of methods of protein structure prediction (CASP)--round x. Proteins 82(Suppl 2):1–6
CAS
PubMed
CrossRef
Google Scholar
Muhammed MT, Aki-Yalcin E (2019) Homology modeling in drug discovery: overview, current applications, and future perspectives. Chem Biol Drug Des 93:12–20
CAS
PubMed
CrossRef
Google Scholar
Kaczanowski S, Zielenkiewicz P (2010) Why similar protein sequences encode similar three-dimensional structures? Theor Chem Accounts 125:643–650
CAS
CrossRef
Google Scholar
Müller T, Rahmann S, Rehmsmeier M (2001) Non-symmetric score matrices and the detection of homologous transmembrane proteins. Bioinformatics 17(Suppl 1):S182–S189
PubMed
CrossRef
Google Scholar
Ng PC, Henikoff JG, Henikoff S (2000) PHAT: a transmembrane-specific substitution matrix. Predicted hydrophobic and transmembrane. Bioinformatics 16:760–766
CAS
PubMed
CrossRef
Google Scholar
Wang S, Fei S, Wang Z et al (2019) PredMP: a web server for de novo prediction and visualization of membrane proteins. Bioinformatics 35:691–693
CAS
PubMed
CrossRef
Google Scholar
Kelm S, Shi J, Deane CM (2010) MEDELLER: homology-based coordinate generation for membrane proteins. Bioinformatics 26:2833–2840
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ebejer J-P, Hill JR, Kelm S et al (2013) Memoir: template-based structure prediction for membrane proteins. Nucleic Acids Res 41:W379–W383
PubMed
PubMed Central
CrossRef
Google Scholar
Webb B, Sali A (2016) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics 54:5.6.1–5.6.37
Google Scholar
Tabassum A, Rajeshwari T, Soni N et al (2014) Structural characterization and mutational assessment of podocin - a novel drug target to nephrotic syndrome - an in silico approach. Interdiscip Sci 6:32–39
CAS
PubMed
CrossRef
Google Scholar
Choi Y, Deane CM (2010) FREAD revisited: accurate loop structure prediction using a database search algorithm. Proteins 78:1431–1440
CAS
PubMed
CrossRef
Google Scholar
Miszta P, Pasznik P, Jakowiecki J et al (2018) GPCRM: a homology modeling web service with triple membrane-fitted quality assessment of GPCR models. Nucleic Acids Res 46:W387–W395
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kryshtafovych A, Schwede T, Topf M et al (2019) Critical assessment of methods of protein structure prediction (CASP)-round XIII. Proteins 87:1011–1020
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Xu J, Wang S (2019) Analysis of distance-based protein structure prediction by deep learning in CASP13. Proteins 87:1069–1081
CAS
PubMed
CrossRef
Google Scholar
Wang S, Li Z, Yu Y, Xu J (2017) Folding membrane proteins by deep transfer learning. Cell Syst 5:202–211.e3
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Yang J, Shen H-B (2018) MemBrain-contact 2.0: a new two-stage machine learning model for the prediction enhancement of transmembrane protein residue contacts in the full chain. Bioinformatics 34:230–238
CAS
PubMed
CrossRef
Google Scholar
Senior AW, Evans R, Jumper J et al (2020) Improved protein structure prediction using potentials from deep learning. Nature 577:706–710
CAS
PubMed
CrossRef
Google Scholar
AlQuraishi M (2019) End-to-End Differentiable Learning of Protein Structure. Cell Syst 8:292–301.e3
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Pellowe GA, Booth PJ (2020) Structural insight into co-translational membrane protein folding. Biochim Biophys Acta Biomembr 1862:183019
CAS
PubMed
CrossRef
Google Scholar
Wang S, Li W, Liu S, Xu J (2016) RaptorX-property: a web server for protein structure property prediction. Nucleic Acids Res 44:W430–W435
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Wang S, Peng J, Ma J, Xu J (2016) Protein secondary structure prediction using deep convolutional neural fields. Sci Rep 6:18962
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Seemayer S, Gruber M, Söding J (2014) CCMpred--fast and precise prediction of protein residue-residue contacts from correlated mutations. Bioinformatics 30:3128–3130
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Brünger AT, Adams PD, Clore GM et al (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921
PubMed
CrossRef
Google Scholar
Cheung NJ, Yu W (2019) Sibe: a computation tool to apply protein sequence statistics to predict folding and design in silico. BMC Bioinformatics 20:455
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Kharche SA, Sengupta D (2020) Dynamic protein interfaces and conformational landscapes of membrane protein complexes. Curr Opin Struct Biol 61:191–197
CAS
PubMed
CrossRef
Google Scholar
Zeng B, Hönigschmid P, Frishman D (2019) Residue co-evolution helps predict interaction sites in α-helical membrane proteins. J Struct Biol 206:156–169
CAS
PubMed
CrossRef
Google Scholar
Murakami Y, Mizuguchi K (2010) Applying the Naïve Bayes classifier with kernel density estimation to the prediction of protein-protein interaction sites. Bioinformatics 26:1841–1848
CAS
PubMed
CrossRef
Google Scholar
Lu C, Liu Z, Zhang E et al (2019) MPLs-Pred: predicting membrane protein-ligand binding sites using hybrid sequence-based features and ligand-specific models. Int J Mol Sci 20:3120
CAS
PubMed Central
CrossRef
Google Scholar
Nemoto W, Fukui K, Toh H (2009) GRIP: a server for predicting interfaces for GPCR oligomerization. J Recept Signal Transduct Res 29:312–317
CAS
PubMed
CrossRef
Google Scholar
Nemoto W, Yamanishi Y, Limviphuvadh V et al (2016) GGIP: structure and sequence-based GPCR-GPCR interaction pair predictor. Proteins 84:1224–1233
CAS
PubMed
CrossRef
Google Scholar
Saito A, Tsuchiya D, Sato S et al (2020) Update of the GRIP web service. J Recept Signal Transduct Res 40:348–356
CAS
PubMed
CrossRef
Google Scholar
Hurwitz N, Schneidman-Duhovny D, Wolfson HJ (2016) Memdock: an α-helical membrane protein docking algorithm. Bioinformatics 32:2444–2450
CAS
PubMed
CrossRef
Google Scholar
Halperin I, Ma B, Wolfson H, Nussinov R (2002) Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins 47:409–443
CAS
PubMed
CrossRef
Google Scholar
Pagadala NS, Syed K, Tuszynski J (2017) Software for molecular docking: a review. Biophys Rev 9:91–102
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kaczor AA, Selent J, Sanz F, Pastor M (2013) Modeling complexes of Transmembrane proteins: systematic analysis of protein–protein docking tools. Mol Inform 32:717–733
CAS
PubMed
CrossRef
Google Scholar
Chen R, Li L, Weng Z (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins 52:80–87
CAS
PubMed
CrossRef
Google Scholar
Alekseenko A, Ignatov M, Jones G et al (2020) Protein-protein and protein-peptide docking with ClusPro server. Methods Mol Biol 2165:157–174
CAS
PubMed
CrossRef
Google Scholar
Ghoorah AW, Devignes M-D, Smaïl-Tabbone M, Ritchie DW (2013) Protein docking using case-based reasoning. Proteins 81:2150–2158
CAS
PubMed
CrossRef
Google Scholar
Tovchigrechko A, Vakser IA (2005) Development and testing of an automated approach to protein docking. Proteins 60:296–301
CAS
PubMed
CrossRef
Google Scholar
Duhovny D, Nussinov R, Wolfson HJ (2002) Efficient unbound docking of rigid molecules. In: Guigó R, Gusfield D (eds) Algorithms in bioinformatics. Springer, Berlin, pp 185–200
CrossRef
Google Scholar
Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) Geometry-based flexible and symmetric protein docking. Proteins 60:224–231
CAS
PubMed
CrossRef
Google Scholar
Dominguez C, Boelens R, Bonvin AMJJ (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737
CAS
PubMed
CrossRef
Google Scholar
Koehler Leman J, Lyskov S, Bonneau R (2017) Computing structure-based lipid accessibility of membrane proteins with mp_lipid_acc in RosettaMP. BMC Bioinformatics 18:115
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Koukos PI, Faro I, van Noort CW, Bonvin AMJJ (2018) A membrane protein complex docking benchmark. J Mol Biol 430:5246–5256
CAS
PubMed
CrossRef
Google Scholar
Alford RF, Koehler Leman J, Weitzner BD et al (2015) An integrated framework advancing membrane protein modeling and design. PLoS Comput Biol 11:e1004398
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Lensink MF, Wodak SJ (2014) Score_set: a CAPRI benchmark for scoring protein complexes. Proteins 82:3163–3169
CAS
PubMed
CrossRef
Google Scholar
André I, Bradley P, Wang C, Baker D (2007) Prediction of the structure of symmetrical protein assemblies. Proc Natl Acad Sci U S A 104:17656–17661
PubMed
PubMed Central
CrossRef
Google Scholar
Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Mashiach E, Nussinov R, Wolfson HJ (2010) FiberDock: a web server for flexible induced-fit backbone refinement in molecular docking. Nucleic Acids Res 38:W457–W461
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Mashiach E, Nussinov R, Wolfson HJ (2010) FiberDock: flexible induced-fit backbone refinement in molecular docking. Proteins 78:1503–1519
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
van Zundert GCP, Rodrigues JPGLM, Trellet M et al (2016) The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol 428:720–725
PubMed
CrossRef
CAS
Google Scholar
Goossens K, De Winter H (2018) Molecular dynamics simulations of membrane proteins: an overview. J Chem Inf Model 58:2193–2202
CAS
PubMed
CrossRef
Google Scholar
Hospital A, Goñi R, Orozco M, Gelpi J (2015) Molecular dynamics simulations: advances and applications. Adv Appl Bioinform Chem 8:37–47
PubMed
PubMed Central
Google Scholar
Alford RF, Smolin N, Young HS et al (2020) Protein docking and steered molecular dynamics suggest alternative phospholamban-binding sites on the SERCA calcium transporter. J Biol Chem 295:11262–11274
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Im W, Brooks CL 3rd (2005) Interfacial folding and membrane insertion of designed peptides studied by molecular dynamics simulations. Proc Natl Acad Sci U S A 102:6771–6776
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kargar F, Emadi S, Fazli H (2020) Dimerization of Aβ40 inside dipalmitoylphosphatidylcholine bilayer and its effect on bilayer integrity: atomistic simulation at three temperatures. Proteins 88(11):1540–1552
CAS
PubMed
CrossRef
Google Scholar
Dhusia K, Su Z, Wu Y (2020) Understanding the impacts of conformational dynamics on the regulation of protein-protein association by a multiscale simulation method. J Chem Theory Comput 16:5323–5333
CAS
PubMed
CrossRef
Google Scholar
Radwan A, Mahrous GM (2020) Docking studies and molecular dynamics simulations of the binding characteristics of waldiomycin and its methyl ester analog to Staphylococcus aureus histidine kinase. PLoS One 15:e0234215
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Goose JE, Sansom MSP (2013) Reduced lateral mobility of lipids and proteins in crowded membranes. PLoS Comput Biol 9:e1003033
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Fagnen C, Bannwarth L, Oubella I et al (2020) New structural insights into Kir channel gating from molecular simulations, HDX-MS and functional studies. Sci Rep 10:8392
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Jenkins K, Mateeva T, Szabó I et al (2020) Combining data integration and molecular dynamics for target identification in α-Synuclein-aggregating neurodegenerative diseases: structural insights on Synaptojanin-1 (Synj1). Comput Struct Biotechnol J 18:1032–1042
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Adam Hospital, Goñi JR, Orozco M, Gelpí JL (2015) Molecular dynamics simulations: advances and applications. Adv Appl Bioinform Chem 8:37
PubMed
PubMed Central
Google Scholar
Niesen MJM, Zimmer MH, Miller TF 3rd (2020) Dynamics of co-translational membrane protein integration and translocation via the sec translocon. J Am Chem Soc 142:5449–5460
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lee Y, Lazim R, Macalino SJY, Choi S (2019) Importance of protein dynamics in the structure-based drug discovery of class A G protein-coupled receptors (GPCRs). Curr Opin Struct Biol 55:147–153
CAS
PubMed
CrossRef
Google Scholar
Venko K, Roy Choudhury A, Novič M (2017) Computational approaches for revealing the structure of membrane transporters: case study on bilitranslocase. Comput Struct Biotechnol J 15:232–242
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Harpole TJ, Delemotte L (2018) Conformational landscapes of membrane proteins delineated by enhanced sampling molecular dynamics simulations. Biochim Biophys Acta Biomembr 1860:909–926
CAS
PubMed
CrossRef
Google Scholar
Zheng L, Alhossary AA, Kwoh C-K, Mu Y (2019) Molecular dynamics and simulation. In: Encyclopedia of bioinformatics and computational biology. Elsevier, Amsterdam, pp 550–566
CrossRef
Google Scholar
Ferreira RJ, Kasson PM (2019) Antibiotic uptake across gram-negative outer membranes: better predictions towards better antibiotics. ACS Infect Dis 5:2096–2104
CAS
PubMed
CrossRef
Google Scholar
Corey RA, Stansfeld PJ, Sansom MSP (2020) The energetics of protein–lipid interactions as viewed by molecular simulations. Biochem Soc Trans 48:25
CAS
PubMed
CrossRef
Google Scholar
Dutagaci B, Heo L, Feig M (2018) Structure refinement of membrane proteins via molecular dynamics simulations. Proteins 86:738–750
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Loschwitz J, Olubiyi OO, Hub JS et al (2020) Computer simulations of protein–membrane systems. Prog Mol Biol Transl Sci 170:273
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kästner J (2011) Umbrella sampling. WIREs Comput Mol Sci 1:932–942
CrossRef
CAS
Google Scholar
Barducci A, Bonomi M, Parrinello M (2011) Metadynamics. WIREs Comput Mol Sci 1:826–843
CAS
CrossRef
Google Scholar
Ibrahim P, Clark T (2019) Metadynamics simulations of ligand binding to GPCRs. Curr Opin Struct Biol 55:129–137
CAS
PubMed
CrossRef
Google Scholar
Domański J, Hedger G, Best RB et al (2017) Convergence and sampling in determining free energy landscapes for membrane protein association. J Phys Chem B 121:3364–3375
PubMed
CrossRef
CAS
Google Scholar
Shiref H, Bergman S, Clivio S, Sahai MA (2020) The fine art of preparing membrane transport proteins for biomolecular simulations: concepts and practical considerations. Methods S1046-2023:30215-4
Google Scholar
Marrink SJ, Corradi V, Souza PCT et al (2019) Computational modeling of realistic cell membranes. Chem Rev 119:6184–6226
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Sandoval-Perez A, Pluhackova K, Böckmann RA (2017) Critical comparison of biomembrane force fields: protein-lipid interactions at the membrane interface. J Chem Theory Comput 13:2310–2321
CAS
PubMed
CrossRef
Google Scholar
Mustafa G, Nandekar PP, Mukherjee G et al (2020) The effect of force-field parameters on cytochrome P450-membrane interactions: structure and dynamics. Sci Rep 10:7284
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Srivastava A, Nagai T, Srivastava A et al (2018) Role of computational methods in going beyond X-ray crystallography to explore protein structure and dynamics. Int J Mol Sci 19:3401
PubMed Central
CrossRef
CAS
Google Scholar
Dhingra S, Sowdhamini R, Cadet F, Offmann B (2020) A glance into the evolution of template-free protein structure prediction methodologies. Biochimie 175:85–92
CAS
PubMed
CrossRef
Google Scholar
Leelananda SP, Lindert S (2017) Iterative molecular dynamics-Rosetta membrane protein structure refinement guided by Cryo-EM densities. J Chem Theory Comput 13:5131–5145
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Oakes V, Domene C (2019) Combining structural data with computational methodologies to investigate structure-function relationships in TRP channels. Methods Mol Biol 1987:65–82
CAS
PubMed
CrossRef
Google Scholar
Sanders CR, Mittendorf KF (2011) Tolerance to changes in membrane lipid composition as a selected trait of membrane proteins. Biochemistry 50:7858–7867
CAS
PubMed
CrossRef
Google Scholar
Doktorova M, Weinstein H (2018) Accurate in silico modeling of asymmetric bilayers based on biophysical principles. Biophys J 115:1638–1643
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29:1859–1865
CAS
PubMed
CrossRef
Google Scholar
Wassenaar TA, Ingólfsson HI, Böckmann RA et al (2015) Computational lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. J Chem Theory Comput 11:2144–2155
CAS
PubMed
CrossRef
Google Scholar
Wolf MG, Hoefling M, Aponte-Santamaría C et al (2010) g_membed: efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation. J Comput Chem 31:2169–2174
CAS
PubMed
CrossRef
Google Scholar
Wassenaar TA, Pluhackova K, Böckmann RA et al (2014) Going backward: a flexible geometric approach to reverse transformation from coarse grained to atomistic models. J Chem Theory Comput 10:676–690
CAS
PubMed
CrossRef
Google Scholar
Newport TD, Sansom MSP, Stansfeld PJ (2019) The MemProtMD database: a resource for membrane-embedded protein structures and their lipid interactions. Nucleic Acids Res 47:D390–D397
CAS
PubMed
CrossRef
Google Scholar
Stansfeld PJ, Goose JE, Caffrey M et al (2015) MemProtMD: automated insertion of membrane protein structures into explicit lipid membranes. Structure 23:1350–1361
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Chitrak Gupta BM (2017) Protonation enhances the inherent helix-forming propensity of pHLIP. ACS Omega 2:8536
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Pallante L, Rocca A, Klejborowska G et al (2020) In silico investigations of the mode of action of novel colchicine derivatives targeting β-tubulin Isotypes: a search for a selective and specific β-III tubulin ligand. Front Chem 8:108
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Im W, Roux B (2002) Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, brownian dynamics, and continuum electrodiffusion theory. J Mol Biol 322:851–869
CAS
PubMed
CrossRef
Google Scholar
Gupta C, Ren Y, Mertz B (2018) Cooperative nonbonded forces control membrane binding of the pH-low insertion peptide pHLIP. Biophys J 115:2403
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Mertz B, Feng J, Corcoran C, Neeley B (2015) Explaining the mobility of retinal in activated rhodopsin and opsin. Photochem Photobiol Sci 14:1952–1964
CAS
PubMed
CrossRef
Google Scholar
Faramarzi S, Feng J, Mertz B (2018) Allosteric effects of the proton donor on the microbial proton pump proteorhodopsin. Biophys J 115:1240
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Liu Y, Haddadian E, Sosnick TR et al (2013) A novel implicit solvent model for simulating the molecular dynamics of RNA. Biophys J 105:1248–1257
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lazaridis T (2003) Effective energy function for proteins in lipid membranes. Proteins 52:176–192
CAS
PubMed
CrossRef
Google Scholar
Laradji M, Sunil Kumar PB, Spangler EJ (2016) Exploring large-scale phenomena in composite membranes through an efficient implicit-solvent model. J Phys D Appl Phys 49:293001
CrossRef
CAS
Google Scholar
Kellici TF, Ntountaniotis D, Liapakis G et al (2019) The dynamic properties of angiotensin II type 1 receptor inverse agonists in solution and in the receptor site. Arab J Chem 12:5062–5078
CAS
CrossRef
Google Scholar
Mizuhara Y, Parkin D, Umezawa K et al (2017) Over-destabilization of protein-protein interaction in generalized born model and utility of energy density integration cutoff. J Phys Chem B 121:4669–4677
CAS
PubMed
CrossRef
Google Scholar
Ulmschneider MB, Ulmschneider JP, Sansom MSP, Di Nola A (2007) A generalized born implicit-membrane representation compared to experimental insertion free energies. Biophys J 92:2338–2349
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ulmschneider JP, Ulmschneider MB (2007) Folding simulations of the transmembrane helix of virus protein U in an implicit membrane model. J Chem Theory Comput 3:2335–2346
CAS
PubMed
CrossRef
Google Scholar
Tanford C, Roxby R (1972) Interpretation of protein titration curves. Application to lysozyme. Biochemistry 11:2192–2198
CAS
PubMed
CrossRef
Google Scholar
Singharoy A, Barragan AM, Thangapandian S et al (2016) Binding site recognition and docking dynamics of a single electron transport protein: cytochrome c2. J Am Chem Soc 138:12077–12089
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Chen J, Brooks CL 3rd, Khandogin J (2008) Recent advances in implicit solvent-based methods for biomolecular simulations. Curr Opin Struct Biol 18:140–148
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Jo S, Vargyas M, Vasko-Szedlar J et al (2008) PBEQ-solver for online visualization of electrostatic potential of biomolecules. Nucleic Acids Res 36:W270–W275
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 32:W665–W667
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Mori T, Miyashita N, Im W et al (2016) Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms. Biochim Biophys Acta 1858:1635
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Zacharias M (2013) Combining coarse-grained nonbonded and atomistic bonded interactions for protein modeling. Proteins 81:81–92
CAS
PubMed
CrossRef
Google Scholar
Togashi Y, Flechsig H (2018) Coarse-grained protein dynamics studies using elastic network models. Int J Mol Sci 19:3899
PubMed Central
CrossRef
CAS
Google Scholar
Fuglebakk E, Reuter N, Hinsen K (2013) Evaluation of protein elastic network models based on an analysis of collective motions. J Chem Theory Comput 9:5618–5628
CAS
PubMed
CrossRef
Google Scholar
Dickson CJ, Madej BD, Skjevik AA et al (2014) Lipid14: the Amber lipid force field. J Chem Theory Comput 10:865–879
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
AMBAR 2020 Reference Manual. https://ambermd.org/doc12/Amber20.pdf. Accessed 10 July 2020
Pieńko T, Trylska J (2020) Extracellular loops of BtuB facilitate transport of vitamin B12 through the outer membrane of E. coli. PLoS Comput Biol 16:e1008024
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Perona A, Ros MP, Mills A et al (2020) Distinct binding of cetirizine enantiomers to human serum albumin and the human histamine receptor H. J Comput Aided Mol Des 34:1045–1106
CAS
PubMed
CrossRef
Google Scholar
Guardia CM, Tan X-F, Lian T et al (2020) Structure of human ATG9A, the only transmembrane protein of the core autophagy machinery. Cell Rep 31:107837
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
CHARMM-GUI. http://www.charmm-gui.org/?doc=archive&lib=lipid. Accessed 10 July 2020
Loney RW, Panzuela S, Chen J et al (2020) Location of the hydrophobic surfactant proteins, SP-B and SP-C, in fluid-phase bilayers. J Phys Chem B 124:6763–6774
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Jahan Sajib MS, Wei Y, Mishra A et al (2020) Atomistic simulations of biofouling and molecular transfer of a cross-linked aromatic polyamide membrane for desalination. Langmuir 36:7658–7668
CAS
PubMed
CrossRef
Google Scholar
Walczewska-Szewc K, Nowak W (2020) Structural determinants of insulin release: disordered N-terminal tail of Kir6.2 affects potassium channel dynamics through interactions with sulfonylurea binding region in a SUR1 partner. J Phys Chem B 124:6198–6211
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Dos Santos EG, Faria RX, Rodrigues CR, Bello ML (2020) Molecular dynamic simulations of full-length human purinergic receptor subtype P2X7 bonded to potent inhibitors. Eur J Pharm Sci 152:105454
PubMed
CrossRef
CAS
Google Scholar
Neumann LSM, Dias AHS, Skaf MS (2020) Molecular modeling of aquaporins from. J Phys Chem B 124:5825–5836
CAS
PubMed
CrossRef
Google Scholar
Kwon B, Mandal T, Elkins MR et al (2020) Cholesterol interaction with the trimeric HIV fusion protein gp41 in lipid bilayers investigated by solid-state NMR spectroscopy and molecular dynamics simulations. J Mol Biol 432:4705–4721
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Rojas G, Orellana I, Rosales-Rojas R et al (2020) Structural determinants of the dopamine transporter regulation mediated by G proteins. J Chem Inf Model 60:3577–3586
CAS
PubMed
CrossRef
Google Scholar
Woo H, Park S-J, Choi YK et al (2020) Developing a fully glycosylated full-length SARS-CoV-2 spike protein model in a viral membrane. J Phys Chem B 124:7128–7137
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ruiz FM, Lopez J, Ferrara CG et al (2020) Structural characterization of TssL from:a key component of the type VI secretion system. J Bacteriol 202:e00210–e00220
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Li H, Gorfe AA (2013) Aggregation of lipid-anchored full-length H-Ras in lipid bilayers: simulations with the MARTINI force field. PLoS One 8:e71018
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Gopal SM, Pawar AB, Wassenaar TA, Sengupta D (2020) Lipid-dependent conformational landscape of the ErbB2 growth factor receptor dimers. Chem Phys Lipids 230:104911
CAS
PubMed
CrossRef
Google Scholar
Prasanna X, Mohole M, Chattopadhyay A, Sengupta D (2020) Role of cholesterol-mediated effects in GPCR heterodimers. Chem Phys Lipids 227:104852
CAS
PubMed
CrossRef
Google Scholar
Inakollu VS, Geerke DP, Rowley CN, Yu H (2020) Polarisable force fields: what do they add in biomolecular simulations? Curr Opin Struct Biol 61:182–190
CAS
PubMed
CrossRef
Google Scholar
Abraham MJ, Murtola T, Schulz R et al (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2:19–25
CrossRef
Google Scholar
Páll S, Abraham MJ, Kutzner C et al (2015) Tackling Exascale software challenges in molecular dynamics simulations with GROMACS. In: Markidis S, Laure E (eds) Solving software challenges for exascale. Springer International Publishing, Cham, pp 3–27
Google Scholar
Phillips JC, Hardy DJ, Maia JDC et al (2020) Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys 153:044130
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Brooks BR, Brooks CL 3rd, Mackerell AD Jr et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Case DA, Belfon K, Ben-Shalom IY et al (2020) AMBER 2020. University of California, San Francisco
Google Scholar
Patodia S (2014) Molecular dynamics simulation of proteins: a brief overview. J Phys Chem Biophys 4:6
CrossRef
CAS
Google Scholar
Doktorova M, LeVine MV, Khelashvili G, Weinstein H (2019) A new computational method for membrane compressibility: bilayer mechanical thickness revisited. Biophys J 116:487–502
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ribeiro JV, Bernardi RC, Rudack T et al (2016) QwikMD - integrative molecular dynamics toolkit for novices and experts. Sci Rep 6:26536
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38
CAS
PubMed
CrossRef
Google Scholar
Rodríguez-Espigares I, Torrens-Fontanals M, Tiemann JKS et al (2020) GPCRmd uncovers the dynamics of the 3D-GPCRome. Nat Methods 17:777–787
PubMed
CrossRef
CAS
Google Scholar
Carrillo-Cabada H, Benson J, Razavi A, et al (2019) A graphic encoding method for quantitative classification of protein structure and representation of conformational changes. IEEE/ACM Trans Comput Biol Bioinform, In Press
Google Scholar
Plante A, Shore DM, Morra G et al (2019) A machine learning approach for the discovery of ligand-specific functional mechanisms of GPCRs. Molecules 24(11):2097
CAS
PubMed Central
CrossRef
Google Scholar