Skip to main content

Poor Person’s pH Simulation of Membrane Proteins

  • Protocol
  • First Online:
Computational Design of Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2315))

Abstract

pH conditions are central to the functioning of all biomolecules. However, implications of pH changes are nontrivial on a molecular scale. Though a rigorous microscopic definition of pH exists, its implementation in classical molecular dynamics (MD) simulations is cumbersome, and more so in large integral membrane systems. In this chapter, an integrative pipeline is described that combines Multi-Conformation Continuum Electrostatics (MCCE) computations with MD simulations to capture the effect of transient protonation states on the coupled conformational changes in transmembrane proteins. The core methodologies are explained, and all the software required to set up this pipeline are outlined with their key parameters. All associated analyses of structure and function are provided using two case studies, namely those of bioenergetic complexes: NADH dehydrogenase (complex I) and Vo domain of V-type ATPase. The hybrid MCCE-MD pipeline has allowed the discovery of hydrogen bond networks, ligand binding pathways, and disease-causing mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tanford C, Roxby R (1972) Interpretation of protein titration curves. Application to lysozyme. Biochemistry 11:2192–2198

    CAS  PubMed  Google Scholar 

  2. Dolphin GT, Baltzer L (1997) The pH-dependent tertiary structure of a designed helix–loop–helix dimer. Folding Design 2:319–330

    Article  CAS  PubMed  Google Scholar 

  3. Russo NVD, Estrin DA, Martí MA, et al. (2012) pH-dependent conformational changes in proteins and their effect on experimental pKas: the case of nitrophorin 4. PLOS Comput Biol 8:e1002761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Whitten ST, Wooll JO, Razeghifard R, et al. (2001) The origin of pH-dependent changes in m-values for the denaturant-induced unfolding of proteins1 1Edited by C. R. Matthews. J Mol Biol 309:1165–1175

    Article  CAS  Google Scholar 

  5. Yang AS, Honig B (1993) On the pH dependence of protein stability. J Mol Biol 231:459–474

    Article  CAS  PubMed  Google Scholar 

  6. O’Brien EP, Brooks BR, Thirumalai D (2012) Effects of pH on proteins: predictions for ensemble and single-molecule pulling experiments. J Am Chem Soc 134:979–987

    Article  PubMed  CAS  Google Scholar 

  7. Singharoy A, Barragan AM, Thangapandian S, et al. (2016) Binding site recognition and docking dynamics of a single electron transport protein: cytochrome c2. J Am Chem Soc 138:12077–12089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Singharoy A, Maffeo C, Delgado-Magnero KH, et al. (2019) Atoms to phenotypes: molecular design principles of cellular energy metabolism. Cell 179:1098–1111.e23

    Google Scholar 

  9. Yu I, Mori T, Ando T, et al. (2016) Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm. eLife 5:e19274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Anandakrishnan R, Zhang Z, Donovan-Maiye R, et al. (2016) Biophysical comparison of ATP synthesis mechanisms shows a kinetic advantage for the rotary process. Proc Nat Acad Sci 113:11220–11225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Radak BK, Chipot C, Suh D, et al. (2018) Correction to Constant-pH molecular dynamics simulations for large biomolecular systems. J Chem Theory Comput 14:6748–6749

    Article  CAS  PubMed  Google Scholar 

  12. Hammes-Schiffer S (2015) Proton-coupled electron transfer: moving together and charging forward. J Am Chem Soc 137:8860–8871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kaila VRI, Wikström M, Hummer G (2014) Electrostatics, hydration, and proton transfer dynamics in the membrane domain of respiratory complex I. Proc Nat Acad Sci 111:6988–6993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Radak BK, Chipot C, Suh D, et al. (2017) Constant-pH molecular dynamics simulations for large biomolecular systems. J Chem Theory Comput 13:5933–5944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Søndergaard CR, Olsson MHM, Rostkowski M, et al. (2011) Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. J Chem Theory Comput 7:2284–2295

    Article  PubMed  CAS  Google Scholar 

  16. Olsson MHM, Søndergaard CR, Rostkowski M, et al. (2011) PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Che Theory Comput 7:525–537

    Article  CAS  Google Scholar 

  17. Georgescu RE, Alexov EG, Gunner MR (2002) Combining conformational flexibility and continuum electrostatics for calculating pKas in proteins. Biophys J 83:1731–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gupta C, Khaniya U, Chan CK, et al. (2020) Charge transfer and chemo-mechanical coupling in respiratory complex I. J Am Chem Soc 142:9220–9230

    Article  CAS  PubMed  Google Scholar 

  19. Khaniya U, Gupta C, Cai X, et al. (2020) Hydrogen bond network analysis reveals the pathway for the proton transfer in the E-channel of T. thermophilus Complex I. Biochim Biophys Acta Bioenergetics 1861:148240

    Google Scholar 

  20. Sazanov LA (2015) A giant molecular proton pump: structure and mechanism of respiratory complex I. Nat Rev Mol Cell Biol 16:375–388

    Article  CAS  PubMed  Google Scholar 

  21. Gupta C, Shekhar M (2020) pH simulation of membrane systems. https://github.com/SingharoyLab/pH_simulation_membrane.git

  22. Machuqueiro M, Baptista AM (2006) Constant-ph molecular dynamics with ionic strength effects: protonation-conformation coupling in decalysine. J Phys Chem B 110:2927–2933

    Article  CAS  PubMed  Google Scholar 

  23. Williams SL, Blachly PG, McCammon JA (2011) Measuring the successes and deficiencies of constant pH molecular dynamics: a blind prediction study. Proteins: Struct Funct Bioinf 79:3381–3388

    Article  CAS  Google Scholar 

  24. Di Russo NV, Martí MA, Roitberg AE (2014) Underlying thermodynamics of pH-dependent allostery. J Phys Chem B 118:12818–12826

    Article  PubMed  CAS  Google Scholar 

  25. Swails JM, York DM, Roitberg AE (2014) Constant pH replica exchange molecular dynamics in explicit solvent using discrete protonation states: implementation, testing, and validation. J Chem Theory Comput 10:1341–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cruzeiro VWD, Feliciano GT, Roitberg AE (2020) Exploring coupled redox and pH processes with a force-field-based approach: applications to five different systems. J Am Chem Soc 142:3823–3835

    Article  CAS  PubMed  Google Scholar 

  27. Itoh SG, Damjanović A, Brooks BR (2011) pH replica-exchange method based on discrete protonation states. Proteins: Struct Funct Bioinf 79:3420–3436

    Article  CAS  Google Scholar 

  28. Goh GB, Hulbert BS, Zhou H, et al. (2014) Constant pH molecular dynamics of proteins in explicit solvent with proton tautomerism. Proteins: Struct Funct Bioinf 82:1319–1331

    Article  CAS  Google Scholar 

  29. Damjanovic A, Miller BT, Okur A, et al. (2018) Reservoir pH replica exchange. J Chem Phys 149:072321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Vila-Viçosa D, Reis PBPS, Baptista AM, et al. (2019) A pH replica exchange scheme in the stochastic titration constant-pH MD method. J Chem Theory Comput 15:3108–3116

    Article  PubMed  CAS  Google Scholar 

  31. Warshel A, Dryga A (2011) Simulating electrostatic energies in proteins: perspectives and some recent studies of pKas, redox, and other crucial functional properties. Proteins: Struct Funct Bioinf 79:3469–3484

    Article  CAS  Google Scholar 

  32. Zheng Y, Cui Q (2017) Microscopic mechanisms that govern the titration response and pKa values of buried residues in staphylococcal nuclease mutants. Proteins: Struct Funct Bioinf 85:268–281

    Google Scholar 

  33. Oliveira ASF, Campos SRR, Baptista AM, et al. (2016) Coupling between protonation and conformation in cytochrome c oxidase: insights from constant-pH MD simulations. Biochim Biophys Acta: Bioenergetics 1857:759–771

    Article  CAS  Google Scholar 

  34. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  35. Best RB, Zhu X, Shim J, et al. (2012) Optimization of the additive charmm all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles. J Chem Theory Comput 8:3257–3273

    Google Scholar 

  36. Jo S, Kim T, Iyer VG, et al. (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29:1859–1865

    Article  CAS  PubMed  Google Scholar 

  37. Jo S, Lim JB, Klauda JB, et al. (2009) CHARMM-GUI Membrane builder for mixed bilayers and its application to yeast membranes. Biophys J 97:50–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee J, Cheng X, Swails JM, et al. (2016) CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J Chem Theory Comput 12:405–413

    Article  CAS  PubMed  Google Scholar 

  39. Wu EL, Cheng X, Jo S, et al. (2014) CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J Comput Chem 35:1997–2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Trabuco LG, Villa E, Mitra K, et al. (2008) Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16:673–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Trabuco LG, Villa E, Schreiner E, et al. (2009) Molecular dynamics flexible fitting: a practical guide to combine cryo-electron microscopy and X-ray crystallography. Methods 49:174–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Singharoy A, Teo I, McGreevy R, et al. (2016) Molecular dynamics-based refinement and validation for sub-5 Å cryo-electron microscopy maps. eLife 5:e16105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Alexov EG, Gunner MR (1997) Incorporating protein conformational flexibility into the calculation of pH-dependent protein properties. Biophys J 72:2075–2093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Song Y, Mao J, Gunner MR (2009) MCCE2: Improving protein pKa calculations with extensive side chain rotamer sampling. J Comput Chem 30:2231–2247

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nicholls A, Honig B (1991) A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson–Boltzmann equation. J Comput Chem 12:435–445

    Article  CAS  Google Scholar 

  46. Rocchia W, Alexov E, Honig B (2001) Extending the applicability of the nonlinear poisson boltzmann equation: multiple dielectric constants and multivalent ions. J Phys Chem B 105:6754–6754

    Article  CAS  Google Scholar 

  47. Phillips JC, Braun R, Wang W, et al. (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kortemme T, Baker D (2002) A simple physical model for binding energy hot spots in protein–protein complexes. Proc Nat Acad Sci 99:14116–14121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kortemme T, Kim DE, Baker D (2004) Computational alanine scanning of protein-protein interfaces. Sci STKE 2004:pl2

    Google Scholar 

  50. Sazanov LA (2007) Respiratory complex I: Mechanistic and structural insights provided by the crystal structure of the hydrophilic domain. Biochemistry 46:2275–2288

    Article  CAS  PubMed  Google Scholar 

  51. Aird A, Wrachtrup J, Schulten K, et al. (2007) Possible pathway for ubiquinone shuttling in rhodospirillum rubrum revealed by molecular dynamics simulation. Biophys J 92:23–33

    Article  CAS  PubMed  Google Scholar 

  52. Warnau J, Sharma V, Gamiz-Hernandez AP, et al. (2018) Redox-coupled quinone dynamics in the respiratory complex I. Proc Nat Acad Sci 115:E8413–E8420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Singharoy A, Chipot C, Moradi M, et al. (2017) Chemomechanical coupling in hexameric protein–protein interfaces harnesses energy within V-type ATPases. J Am Chem Soc 139:293–310

    Article  CAS  PubMed  Google Scholar 

  54. Shannon P, Markiel A, Ozier O, et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Joosten RP, te Beek TAH, Krieger E, et al. (2011) A series of PDB related databases for everyday needs. Nucl Acids Res 39:D411–D419

    Article  CAS  PubMed  Google Scholar 

  56. Gamiz-Hernandez AP, Jussupow A, Johansson MP, et al. (2017) Terminal electron–proton transfer dynamics in the quinone reduction of respiratory complex I. J Am Chem Soc 139:16282–16288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chang CH, Kim K (2009) Density functional theory calculation of bonding and charge parameters for molecular dynamics studies on [FeFe] hydrogenases. J Chem Theory Comput 5:1137–1145

    Article  CAS  PubMed  Google Scholar 

  58. Freddolino PL, Gardner KH, Schulten K (2013) Signaling mechanisms of LOV domains: new insights from molecular dynamics studies. Photochem Photobiol Sci 12:1158–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fontecilla-Camps JC, Volbeda A, Cavazza C, et al. (2007) Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem Rev 107:4273–4303

    Article  CAS  PubMed  Google Scholar 

  60. Efremov RG, Sazanov LA (2012) The coupling mechanism of respiratory complex I—A tructural and evolutionary perspective. Biochim Biophys Acta: Bioenergetics 1817:1785–1795

    Article  CAS  Google Scholar 

  61. Mathiesen C, Hägerhäll C (2002) Transmembrane topology of the NuoL, M and N subunits of NADH:quinone oxidoreductase and their homologues among membrane-bound hydrogenases and bona fide antiporters. Biochim Biophys Acta: Bioenergetics 1556:121–132

    Article  CAS  Google Scholar 

  62. Ripple MO, Kim N, Springett R (2013) Mammalian complex I pumps 4 protons per 2 electrons at high and physiological proton motive force in living cells. J Biol Chem 288:5374–5380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zickermann V, Wirth C, Nasiri H, et al. (2015) Mechanistic insight from the crystal structure of mitochondrial complex I. Science 347:44–49

    Article  CAS  PubMed  Google Scholar 

  64. Efremov RG, Sazanov LA (2011) Structure of the membrane domain of respiratory complex I. Nature 476:414–420

    Article  CAS  PubMed  Google Scholar 

  65. Baradaran R, Berrisford JM, Minhas GS, et al. (2013) Crystal structure of the entire respiratory complex I. Nature 494:443–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cai X, Haider K, Lu J, et al. (2018) Network analysis of a proposed exit pathway for protons to the P-side of cytochrome c oxidase. Biochim Biophys Acta: Bioenergetics 1859:997–1005

    Article  CAS  PubMed  Google Scholar 

  67. Song Y, Mao J, Gunner MR (2003) Calculation of proton transfers in bacteriorhodopsin bR and M intermediates. Biochemistry 42:9875–9888

    Article  CAS  PubMed  Google Scholar 

  68. Zhang Y, Haider K, Kaur D, et al. (2020) Characterizing the water wire in the Gramicidin channel found by Monte Carlo sampling using continuum electrostatics and in molecular dynamics trajectories with conventional or polarizable force fields. J Theor Comput Chem 2020:2042001

    Article  Google Scholar 

  69. Kashani-Poor N, Zwicker K, Kerscher S, et al. (2001) A central functional role for the 49-kDa subunit within the catalytic core of mitochondrial complex I. J Biol Chem 276:24082–24087

    Article  CAS  PubMed  Google Scholar 

  70. Garofano A, Zwicker K, Kerscher S, et al. (2003) Two aspartic acid residues in the PSST-homologous NUKM subunit of complex I from Yarrowia lipolytica are essential for catalytic activity. J Biol Chem 278:42435–42440

    Article  CAS  PubMed  Google Scholar 

  71. Hoias Teixeira M, Menegon Arantes G (2019) Balanced internal hydration discriminates substrate binding to respiratory complex I. Biochim Biophys Acta: Bioenergetics 1860:541–548

    Article  CAS  PubMed  Google Scholar 

  72. Maklashina E, Cecchini G (2010) The quinone-binding and catalytic site of complex II. Biochim Biophys Acta: Bioenergetics 1797:1877–1882

    Article  CAS  Google Scholar 

  73. Roh SH, Stam NJ, Hryc CF, et al. (2018) The 3.5-Å CryoEM structure of nanodisc-reconstituted yeast vacuolar ATPase Vo proton channel. Mol Cell 69:993–1004.e3

    Google Scholar 

  74. Roh SH, Shekhar M, Pintilie G, et al. (2020) Cryo-EM and MD infer water-mediated proton transport and autoinhibition mechanisms of vo complex. Sci Adv 6:eabb9605

    Google Scholar 

  75. Luca AD, Gamiz-Hernandez AP, Kaila VRI (2017) Symmetry-related proton transfer pathways in respiratory complex I. Proc Nat Acad Sci 114:E6314–E6321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Haapanen O, Sharma V (2017) Role of water and protein dynamics in proton pumping by respiratory complex I. Sci Rep 7:7747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge start-up funds from the School of Molecular Sciences and Center for Applied Structure Discovery at Arizona State University, and the resources of the OLCF at the Oak Ridge National Laboratory, which is supported by the Office of Science at DOE under Contract No. DE-AC05-00OR22725, made available via the INCITE program. We also acknowledge NAMD and VMD developments supported by NIH (P41GM104601) and R01GM098243-02 for supporting our study of membrane proteins. AS acknowledges NSF (MCB-1942763) and NIH (R01GM095583). MG acknowledges NSF (MCB-1519640).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Singharoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gupta, C. et al. (2021). Poor Person’s pH Simulation of Membrane Proteins. In: Moreira, I.S., Machuqueiro, M., Mourão, J. (eds) Computational Design of Membrane Proteins. Methods in Molecular Biology, vol 2315. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1468-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1468-6_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1467-9

  • Online ISBN: 978-1-0716-1468-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics