Skip to main content

Novel Single-Cell and High-Throughput Microscopy Techniques to Monitor Dictyostelium discoideumMycobacterium marinum Infection Dynamics

  • Protocol
  • First Online:
Mycobacteria Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2314))

Abstract

The Dictyostelium discoideum–Mycobacterium marinum host–pathogen system is a well-established and powerful alternative model system to study mycobacterial infections. In this chapter, we will describe three microscopy methods that allow the precise identification and quantification of very diverse phenotypes arising during infection of D. discoideum with M. marinum. First, at the lowest end of the scale, we use the InfectChip, a microfluidic device that enables the long-term monitoring of the integrated history of the infection course at the single-cell level. We use single-cell analysis to precisely map and quantitate the various fates of the host and the pathogen during infection. Second, a high-content microscopy setup was established to study the infection dynamics with high-throughput imaging of a large number of cells at the different critical stages of infection. The large datasets are then fed into a deep image analysis pipeline allowing the development of complex phenotypic analyses. Finally, as part of its life cycle, single D. discoideum amoebae aggregate by chemotaxis to form multicellular structures, which represent ordered assemblies of hundreds of thousands of cells. This transition represents a challenge for the monitoring of infection at multiple scales, from single cells to a true multicellular organism. In order to visualize and quantitate the fates of host cells and bacteria during the developmental cycle in a controlled manner, we can adjust the proportion of infected cells using live FAC-sorting. Then, cells are plated in defined humidity conditions on optical glass plates in order to image large fields, using tile scans, with the help of a spinning disc confocal microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boulais J, Trost M, Landry CR, Dieckmann R, Levy ED, Soldati T, Michnick SW, Thibault P, Desjardins M (2010) Molecular characterization of the evolution of phagosomes. Mol Syst Biol 6(1):423. https://doi.org/10.1038/msb.2010.80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dunn JD, Bosmani C, Barisch C, Raykov L, Lefrançois LH, Cardenal-Muñoz E, López-Jiménez AT, Soldati T (2018) Eat prey, live: Dictyostelium discoideum as a model for cell-autonomous defenses. Front Immunol 8. https://doi.org/10.3389/fimmu.2017.01906

  3. Eichinger L, Pachebat JA, Glöckner G, Rajandream M-A, Sucgang R, Berriman M, Song J, Olsen R, Szafranski K, Xu Q, Tunggal B, Kummerfeld S, Madera M, Konfortov BA, Rivero F, Bankier AT, Lehmann R, Hamlin N, Davies R, Gaudet P, Fey P, Pilcher K, Chen G, Saunders D, Sodergren E, Davis P, Kerhornou A, Nie X, Hall N, Anjard C, Hemphill L, Bason N, Farbrother P, Desany B, Just E, Morio T, Rost R, Churcher C, Cooper J, Haydock S, Driessche N, Cronin A, Goodhead I, Muzny D, Mourier T, Pain A, Lu M, Harper D, Lindsay R, Hauser H, James K, Quiles M, Babu MM, Saito T, Buchrieser C, Wardroper A, Felder M, Thangavelu M, Johnson D, Knights A, Loulseged H, Mungall K, Oliver K, Price C, Quail MA, Urushihara H, Hernandez J, Rabbinowitsch E, Steffen D, Sanders M, Ma J, Kohara Y, Sharp S, Simmonds M, Spiegler S, Tivey A, Sugano S, White B, Walker D, Woodward J, Winckler T, Tanaka Y, Shaulsky G, Schleicher M, Weinstock G, Rosenthal A, Cox EC, Chisholm RL, Gibbs R, Loomis WF, Platzer M, Kay RR, Williams J, Dear PH, Noegel AA, Barrell B, Kuspa A (2005) The genome of the social amoeba Dictyostelium discoideum. Nature 435(7038):43–57. https://doi.org/10.1038/nature03481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Iriki H, Kawata T, Muramoto T (2019) Generation of deletions and precise point mutations in Dictyostelium discoideum using the CRISPR nickase. PLoS One 14(10):e0224128. https://doi.org/10.1371/journal.pone.0224128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sekine R, Kawata T, Muramoto T (2018) CRISPR/Cas9 mediated targeting of multiple genes in Dictyostelium. Sci Rep 8(1):1–11. https://doi.org/10.1038/s41598-018-26756-z

    Article  CAS  Google Scholar 

  6. Phillips JE, Huang E, Shaulsky G, Gomer RH (2011) The putative bZIP transcripton factor BzpN slows proliferation and functions in the regulation of cell density by autocrine signals in Dictyostelium. PLoS One 6(7). https://doi.org/10.1371/journal.pone.0021765

  7. Stinear TP, Seemann T, Harrison PF, Jenkin GA, Davies JK, Johnson PD, Abdellah Z, Arrowsmith C, Chillingworth T, Churcher C, Clarke K, Cronin A, Davis P, Goodhead I, Holroyd N, Jagels K, Lord A, Moule S, Mungall K, Norbertczak H, Quail MA, Rabbinowitsch E, Walker D, White B, Whitehead S, Small PL, Brosch R, Ramakrishnan L, Fischbach MA, Parkhill J, Cole ST (2008) Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis. Genome Res 18(5):729–741. https://doi.org/10.1101/gr.075069.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cambier CJ, Falkow S, Ramakrishnan L (2014) Host evasion and exploitation schemes of Mycobacterium tuberculosis. Cell 159(7):1497–1509. https://doi.org/10.1016/j.cell.2014.11.024

    Article  CAS  PubMed  Google Scholar 

  9. Tobin DM, Ramakrishnan L (2008) Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis. Cell Microbiol 10(5):1027–1039. https://doi.org/10.1111/j.1462-5822.2008.01133.x

    Article  CAS  PubMed  Google Scholar 

  10. Cardenal-Muñoz E, Barisch C, Lefrançois LH, López-Jiménez AT, Soldati T (2018) When Dicty Met Myco, a (not so) romantic story about one amoeba and its intracellular pathogen. Front Cell Infect Microbiol 7. https://doi.org/10.3389/fcimb.2017.00529

  11. Russell DG (2007) Who puts the tubercle in tuberculosis? Nat Rev Microbiol 5(1):39–47. https://doi.org/10.1038/nrmicro1538

    Article  CAS  PubMed  Google Scholar 

  12. Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, Haddix PL, Collins HL, Fok AK, Allen RD, Gluck SL, Heuser J, Russell DG (1994) Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263(5147):678–681. https://doi.org/10.1126/science.8303277

    Article  CAS  PubMed  Google Scholar 

  13. Wong D, Bach H, Sun J, Hmama Z, Av-Gay Y (2011) Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification. Proc Natl Acad Sci U S A 108(48):19371–19376. https://doi.org/10.1073/pnas.1109201108

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dhar N, McKinney J, Manina G (2016) Phenotypic heterogeneity in Mycobacterium tuberculosis. Microbiol Spectr 4(6). https://doi.org/10.1128/microbiolspec.TBTB2-0021-2016

  15. Dhar N, McKinney JD (2007) Microbial phenotypic heterogeneity and antibiotic tolerance. Curr Opin Microbiol 10(1):30–38. https://doi.org/10.1016/j.mib.2006.12.007

    Article  CAS  PubMed  Google Scholar 

  16. Delincé MJ, Bureau J-B, López-Jiménez AT, Cosson P, Soldati T, McKinney JD (2016) A microfluidic cell-trapping device for single-cell tracking of host–microbe interactions. Lab Chip 16(17):3276–3285. https://doi.org/10.1039/C6LC00649C

    Article  CAS  PubMed  Google Scholar 

  17. López-Jiménez AT, Hagedorn M, Delincé MJ, McKinney J, Soldati T (2019) The developmental cycle of Dictyostelium discoideum ensures curing of a mycobacterial infection at both cell-autonomous level and by collaborative exclusion. bioRxiv:586263. https://doi.org/10.1101/586263

  18. Trofimov V, Kicka S, Mucaria S, Hanna N, Ramon-Olayo F, Del Peral LV-G, Lelièvre J, Ballell L, Scapozza L, Besra GS, Cox JAG, Soldati T (2018) Antimycobacterial drug discovery using Mycobacteria-infected amoebae identifies anti-infectives and new molecular targets. Sci Rep 8. https://doi.org/10.1038/s41598-018-22228-6

  19. Loomis WF (2014) Cell signaling during development of Dictyostelium. Dev Biol 391(1):1–16. https://doi.org/10.1016/j.ydbio.2014.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bloomfield G, Tanaka Y, Skelton J, Ivens A, Kay RR (2008) Widespread duplications in the genomes of laboratory stocks of Dictyostelium discoideum. Genome Biol 9(4):R75. https://doi.org/10.1186/gb-2008-9-4-r75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Watts DJ, Ashworth JM (1970) Growth of myxameobae of the cellular slime mould Dictyostelium discoideum in axenic culture. Biochem J 119(2):171–174. https://doi.org/10.1042/bj1190171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lemieux MG, Janzen D, Hwang R, Roldan J, Jarchum I, Knecht DA (2014) Visualization of the actin cytoskeleton: different F-actin-binding probes tell different stories. Cytoskeleton 71(3):157–169. https://doi.org/10.1002/cm.21160

    Article  CAS  PubMed  Google Scholar 

  23. Chan K, Knaak T, Satkamp L, Humbert O, Falkow S, Ramakrishnan L (2002) Complex pattern of Mycobacterium marinum gene expression during long-term granulomatous infection. Proc Natl Acad Sci U S A 99(6):3920–3925. https://doi.org/10.1073/pnas.002024599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Solomon JM, Leung GS, Isberg RR (2003) Intracellular replication of Mycobacterium marinum within Dictyostelium discoideum: efficient replication in the absence of host coronin. Infect Immun 71(6):3578–3586. https://doi.org/10.1128/IAI.71.6.3578-3586.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Toniolo C, Delincé M, McKinney JD (2018) Chapter 11 – A microfluidic cell-trapping device to study dynamic host-microbe interactions at the single-cell level. In: Piel M, Fletcher D, Doh J (eds) Methods in cell biology, vol 147. Microfluidics in cell biology part B: microfluidics in single cells. Academic Press, Cambridge, pp 199–213

    Chapter  Google Scholar 

  26. Fey P, Kowal AS, Gaudet P, Pilcher KE, Chisholm RL (2007) Protocols for growth and development of Dictyostelium discoideum. Nat Protoc 2(6):1307–1316. https://doi.org/10.1038/nprot.2007.178

    Article  CAS  PubMed  Google Scholar 

  27. Manders EM, Stap J, Brakenhoff GJ, van Driel R, Aten JA (1992) Dynamics of three-dimensional replication patterns during the S-phase, analysed by double labelling of DNA and confocal microscopy. J Cell Sci 103(Pt 3):857–862

    Article  CAS  Google Scholar 

  28. Bolte S, Cordelières FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224(3):213–232. https://doi.org/10.1111/j.1365-2818.2006.01706.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Soldati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mottet, M., Bosmani, C., Hanna, N., Nitschke, J., Lefrançois, L.H., Soldati, T. (2021). Novel Single-Cell and High-Throughput Microscopy Techniques to Monitor Dictyostelium discoideumMycobacterium marinum Infection Dynamics. In: Parish, T., Kumar, A. (eds) Mycobacteria Protocols. Methods in Molecular Biology, vol 2314. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1460-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1460-0_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1459-4

  • Online ISBN: 978-1-0716-1460-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics