Skip to main content

Metabolomics of Mycobacterium tuberculosis

  • Protocol
  • First Online:
Mycobacteria Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2314))

Abstract

Enzymes fuel the biochemical activities of all cells. Their substrates and products thus represent a potential window into the physiologic state of a cell. Metabolomics focuses on the global, or systems-level, study of small molecules in a given biological system and has thus provided an experimental tool with which to study cellular physiology, including the biochemistry within pathogenic microorganisms. While metabolomic studies of Mycobacterium tuberculosis are still in their infancy, recent studies have begun to deliver unique insights into the composition, organization, activity, and regulation of the bacterium’s physiologic network not accessible by other approaches. Here, we outline practical methods for the culture, collection, and analysis of metabolomic samples from M. tuberculosis that emphasize minimally perturbing sample handling, broad and native metabolite recovery, and sensitive, biologically agnostic metabolite detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patti GJ, Yanes O, Siuzdak G (2012) Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13(4):263–269

    Article  CAS  Google Scholar 

  2. Reaves ML, Rabinowitz JD (2011) Metabolomics in systems microbiology. Curr Opin Biotechnol 22(1):17–25

    Article  CAS  Google Scholar 

  3. Rhee KY, Carvalho LP, Bryk R, Ehrt S, Marrero J, Park SW, Schnappinger D, Venugopal A, Nathan C (2011) Central carbon metabolism in mycobacterium tuberculosis: an unexpected frontier. Trends Microbiol 7:307–314

    Article  Google Scholar 

  4. Saghatelian A, Cravatt BF (2005) Global strategies to integrate the proteome and metabolome. Curr Opin Chem Biol 9(1):62–68

    Article  CAS  Google Scholar 

  5. de Carvalho LP, Zhao H, Dickinson CE, Arango NM, Lima CD, Fischer SM, Ouerfelli O, Nathan C, Rhee KY (2010) Activity-based metabolomic profiling of enzymatic function: identification of rv1248c as a mycobacterial 2-hydroxy-3-oxoadipate synthase. Chem Biol 17(4):323–332

    Article  Google Scholar 

  6. Larrouy-Maumus G, Biswas T, Hunt DM, Kelly G, Tsodikov OV, de Carvalho LP (2013) Discovery of a glycerol 3-phosphate phosphatase reveals glycerophospholipid polar head recycling in mycobacterium tuberculosis. Proc Natl Acad Sci U S A 110(28):11320–11325

    Article  CAS  Google Scholar 

  7. de Carvalho LP, Fischer SM, Marrero J, Nathan C, Ehrt S, Rhee KY (2010) Metabolomics of mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates. Chem Biol 17(10):1122–1131

    Article  Google Scholar 

  8. Eoh H, Rhee KY (2013) Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in mycobacterium tuberculosis. Proc Natl Acad Sci U S A 110(16):6554–6559

    Article  CAS  Google Scholar 

  9. Marrero J, Rhee KY, Schnappinger D, Pethe K, Ehrt S (2010) Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for mycobacterium tuberculosis to establish and maintain infection. Proc Natl Acad Sci U S A 107(21):9819–9824

    Article  CAS  Google Scholar 

  10. Marrero J, Trujillo C, Rhee KY, Ehrt S (2013) Glucose phosphorylation is required for mycobacterium tuberculosis persistence in mice. PLoS Pathog 9(1):e1003116

    Article  CAS  Google Scholar 

  11. Eoh H, Rhee KY (2014) Methylcitrate cycle defines the bactericidal essentiality of isocitrate lyase for survival of mycobacterium tuberculosis on fatty acids. Proc Natl Acad Sci U S A 111(13):4976–4981

    Article  CAS  Google Scholar 

  12. Ganapathy U, Marrero J, Calhoun S, Eoh H, de Carvalho LP, Rhee K, Ehrt S (2015) Two enzymes with redundant fructose bisphosphatase activity sustain gluconeogenesis and virulence in Mycobacterium tuberculosis. Nat Commun 6(1):1–12

    Article  Google Scholar 

  13. Maksymiuk C, Balakrishnan A, Bryk R, Rhee KY, Nathan CF (2015) E1 of alpha-ketoglutarate dehydrogenase defends Mycobacterium tuberculosis against glutamate anaplerosis and nitroxidative stress. Proc Natl Acad Sci U S A 112(43):E5834–E5843

    Article  CAS  Google Scholar 

  14. Noy T, Vergnolle O, Hartman TE, Rhee KY, Jacobs WR, Berney M, Blanchard JS (2016) Central role of pyruvate kinase in carbon co-catabolism of Mycobacterium tuberculosis. J Biol Chem 291(13):7060–7069

    Article  CAS  Google Scholar 

  15. Warrier T, Kapilashrami K, Argyrou A, Ioerger TR, Little D, Murphy KC, Nandakumar M, Park S, Gold B, Mi J, Zhang T, Meiler E, Rees M, Somersan-Karakaya S, Porras-De Francisco E, Martinez-Hoyos M, Burns-Huang K, Roberts J, Ling Y, Rhee KY, Mendoza-Losana A, Luo M, Nathan CF (2016) N-methylation of a bactericidal compound as a resistance mechanism in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 113(31):E4523–E4530

    Article  CAS  Google Scholar 

  16. Eoh H, Wang Z, Layre E, Rath P, Morris R, Moody DB, Rhee KY (2017) Metabolic anticipation in Mycobacterium tuberculosis. Nat Microbiol 2(8):17084

    Article  CAS  Google Scholar 

  17. Puckett S, Trujillo C, Wang Z, Eoh H, Ioerger TR, Krieger I, Sacchettini J, Schnappinger D, Rhee KY, Ehrt S (2017) Glyoxylate detoxification is an essential function of malate synthase required for carbon assimilation in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 114(11):E2225–E2232

    Article  CAS  Google Scholar 

  18. Ruecker N, Jansen R, Trujillo C, Puckett S, Jayachandran P, Piroli GG, Frizzell N, Molina H, Rhee KY, Ehrt S (2017) Fumarase deficiency causes protein and metabolite succination and intoxicates Mycobacterium tuberculosis. Cell Chem Biol 24(3):306–315

    Article  CAS  Google Scholar 

  19. Chakraborty S, Gruber T, Barry CE 3rd, Boshoff HI, Rhee KY (2013) Para-aminosalicylic acid acts as an alternative substrate of folate metabolism in mycobacterium tuberculosis. Science 339(6115):88–91

    Article  CAS  Google Scholar 

  20. Kwon YK, Higgins MB, Rabinowitz JD (2010) Antifolate-induced depletion of intracellular glycine and purines inhibits thymineless death in E. coli. ACS Chem Biol 5(8):787–795

    Article  CAS  Google Scholar 

  21. Kwon YK, Lu W, Melamud E, Khanam N, Bognar A, Rabinowitz JD (2008) A domino effect in antifolate drug action in Escherichia coli. Nat Chem Biol 4(10):602–608

    Article  CAS  Google Scholar 

  22. Bockman MR, Kalinda AS, Petrelli R, De la Mora-Rey T, Tiwari D, Liu F, Dawadi S, Nandakumar M, Rhee KY, Schnappinger D, Finzel BC, Aldrich CC (2015) Targeting Mycobacterium tuberculosis biotin protein ligase (MtBPL) with nucleoside-based bisubstrate adenylation inhibitors. J Med Chem 58(18):7349–7369

    Article  CAS  Google Scholar 

  23. Park Y, Pacitto A, Bayliss T, Cleghorn LAT, Wang Z, Hartman T, Arora K, Ioerger TR, Sacchettini J, Rizzi M, Donini S, Blundell TL, Ascher DB, Rhee K, Breda A, Zhou N, Dartois V, Jonnala SR, Via LE, Mizrahi V, Epemolu O, Stojanovski L, Simeons F, Osuna-Cabello M, Ellis L, MacKenzie CJ, Smith ARC, Davis SH, Murugesan D, Buchanan KI, Turner PA, Huggett M, Zuccotto F, Rebollo-Lopez MJ, Lafuente-Monasterio MJ, Sanz O, Santos Diaz G, Lelievre J, Ballell J, Selenski C, Axtman M, Ghidelli-Disse S, Pflaumer H, Bosche M, Drewes G, Freiberg GM, Kurnick MD, Srikumaran M, Kempf DJ, Green SR, Ray PC, Read K, Wyatt P, Barry CE, Boshoff HI (2016) Essential but not vulnerable: indazole sulfonamides targeting inosine monophosphate dehydrogenase as potential leads against Mycobacterium tuberculosis. ACS Infect Dis 3(1):18–33

    Article  Google Scholar 

  24. Chen C, Gardete S, Jansen RS, Shetty A, Dick T, Rhee KY, Dartois V (2018) Verapamil targets membrane energetics in Mycobacterium tuberculosis. Antimicrob Agents Chemother 62(5):e02107–e02117

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ballinger E, Mosior J, Hartman T, Burns-Huang K, Gold B, Morris R, Goullieux L, Blanc I, Vaubourgeix J, Lagrange S, Fraisse L, Sans S, Couturier C, Bacque E, Rhee K, Scarry SM, Aube J, Yang G, Ouerfelli O, Schnappinger D, Ioerger TR, Engelhart CA, McConnell JA, McAulay K, Fay A, Roubert C, Sacchettini J, Nathan C (2019) Opposing reactions in coenzyme A metabolism sensitize Mycobacterium tuberculosis to enzyme inhibition. Science 363(6426):eaau8959

    Article  CAS  Google Scholar 

  26. Wang Z, Soni V, Marriner G, Kaneko T, Boshoff HIM, Barry CE, Rhee KY (2019) Mode-of-action profiling reveals glutamine synthetase as a collateral metabolic vulnerability of M. tuberculosis to bedaquiline. Proc Natl Acad Sci U S A 116(39):19646–19651

    Article  CAS  Google Scholar 

  27. Villas-Boas SG, Mas S, Akesson M, Smedsgaard J, Nielsen J (2005) Mass spectrometry in metabolome analysis. Mass Spectrom Rev 24(5):613–646

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors M. Nandakumar and LPS de Carvalho contributed to the previous version of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu Rhee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Planck, K.A., Rhee, K. (2021). Metabolomics of Mycobacterium tuberculosis . In: Parish, T., Kumar, A. (eds) Mycobacteria Protocols. Methods in Molecular Biology, vol 2314. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1460-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1460-0_25

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1459-4

  • Online ISBN: 978-1-0716-1460-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics