Skip to main content

The Therapeutic Antibody Profiler for Computational Developability Assessment

  • Protocol
  • First Online:
Therapeutic Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2313))

Abstract

The need to consider an antibody’s “developability” (immunogenicity, solubility, specificity, stability, manufacturability, and storability) is now well understood in therapeutic antibody design. Predicting these properties rapidly and inexpensively is critical to industrial workflows, to avoid devoting resources to non-productive candidates. Here, we describe a high-throughput computational developability assessment tool, the Therapeutic Antibody Profiler (TAP), which assesses the physicochemical “druglikeness” of an antibody candidate. Input variable domain sequences are converted to three-dimensional structural models, and then five developability-linked molecular surface descriptors are calculated and compared to advanced-stage clinical therapeutics. Values at the extremes of/outside of the distributions seen in therapeutics imply an increased risk of developability issues. Therefore, TAP, starting only from sequence information, provides a route to rapidly identifying drug candidate antibodies that are likely to have poor developability. Our web application (opig.stats.ox.ac.uk/webapps/tap) profiles input antibody sequences against a continually updated reference set of clinical therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kaplon H, Muralidharan M, Schneider Z et al (2020) Antibodies to watch in 2020. mAbs 12(1):1703531

    Article  Google Scholar 

  2. Sormanni P, Aprile FA, Vendruscolo M (2018) Third generation antibody discovery methods: in silico rational design. Chem Soc Rev 47(24):9137–9157

    Article  CAS  Google Scholar 

  3. Jarasch A, Koll H, Regula JT et al (2015) Developability assessment during the selection of novel therapeutic antibodies. J Pharm Sci 104(6):1885–1898

    Article  CAS  Google Scholar 

  4. Xu Y, Wang D, Mason B et al (2019) Structure, heterogeneity and developability assessment of therapeutic antibodies. mAbs 11(2):239–264

    Article  CAS  Google Scholar 

  5. Dobson CL, Devine PWA, Phillips JJ et al (2016) Engineering the surface properties of a human monoclonal antibody prevents self-association and rapid clearance in vivo. Sci Rep 6:38644

    Article  CAS  Google Scholar 

  6. Popovic B, Gibson S, Senussi T et al (2017) Engineering the expression of an anti-interleukin-13 antibody through rational design and mutagenesis. Protein Eng Des Sel 30(4):303–311

    CAS  PubMed  Google Scholar 

  7. Norman RA, Ambrosetti F, Bonvin AMJJ et al (2019) Computational approaches to therapeutic antibody design: established methods and emerging trends. Brief Bioinf 21(5):1549–1567

    Google Scholar 

  8. Parola C, Neumeier D, Reddy ST (2018) Integrating high-throughput screening and sequencing for monoclonal antibody discovery and engineering. Immunology 153(1):31–41

    Article  CAS  Google Scholar 

  9. Gentiluomo L, Svilenov HL, Augustijn D et al (2019) Advancing therapeutic protein discovery and development through comprehensive computational and biophysical characterization. Mol Pharm 17(2):426–440

    Google Scholar 

  10. Sormanni P, Amery L, Ekizoglou S et al (2017) Rapid and accurate in silico solubility screening of a monoclonal antibody library. Sci Rep 7:8200

    Article  Google Scholar 

  11. Sharma VK, Patapoff TW, Kabakoff B et al (2014) In silico selection of therapeutic antibodies for development: viscosity, clearance, and chemical stability. Proc Natl Acad Sci U S A 111(52):18601–18606

    Article  CAS  Google Scholar 

  12. Chennamsetty N, Voynov V, Kayser V et al (2009) Design of therapeutic proteins with enhanced stability. Proc Natl Acad Sci U S A 106(29):11937–11942

    Article  CAS  Google Scholar 

  13. Lauer TM, Agrawal NJ, Chennamsetty N et al (2012) Developability index: a rapid in silico tool for the screening of antibody aggregation propensity. J Pharm Sci 101(1):102–115

    Article  CAS  Google Scholar 

  14. Jain T, Boland T, Lilov A et al (2017) Prediction of delayed retention of antibodies in hydrophobic interaction chromatography from sequence using machine learning. Bioinformatics 33(23):3758–3766

    Article  CAS  Google Scholar 

  15. Obrezanova O, Arnell A, de la Cuesta RG et al (2015) Aggregation risk prediction for antibodies and its application to biotherapeutic development. mAbs 7(2):352–363

    Article  CAS  Google Scholar 

  16. Yadav S, Laue TM, Kalonia DS (2012) The influence of charge distribution on self-association and viscosity behaviour of monoclonal antibody solutions. Mol Pharm 9(4):791–802

    Article  CAS  Google Scholar 

  17. Datta-Mannan A, Thangaraju A, Leung D et al (2015) Balancing charge in the complementarity-determining regions of humanized mAbs without affecting pI reduces non-specific binding and improves the pharmacokinetics. mAbs 7(3):483–493

    Article  CAS  Google Scholar 

  18. Jain T, Sun T, Durand S (2017) Biophysical properties of the clinical-stage antibody landscape. Proc Natl Acad Sci U S A 114(5):944–949

    Article  CAS  Google Scholar 

  19. Hebditch M, Warwicker J (2019) Charge and hydrophobicity are key features in sequence-trained machine learning models for predicting the biophysical properties of clinical-stage antibodies. PeerJ 7:e8199

    Article  Google Scholar 

  20. Raybould MIJ, Marks C, Krawczyk K et al (2019) Five computational developability guidelines for therapeutic antibody profiling. Proc Natl Acad Sci U S A 116(10):4025–4030

    Article  CAS  Google Scholar 

  21. Lipinski CA, Lombardo F, Dominy BW et al (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23(1–3):3–25

    Article  CAS  Google Scholar 

  22. Raybould MIJ, Marks C, Lewis AP et al (2019) Thera-SAbDab: the therapeutic structural antibody database. Nucleic Acids Res 48(D1):D383–D388

    Article  Google Scholar 

  23. Shrake A, Rupley JA (1973) Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J Mol Biol 79(2):361–371

    Article  Google Scholar 

  24. Lefranc MP, Pommié C, Ruiz M et al (2003) IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol 27(1):55–77

    Article  CAS  Google Scholar 

  25. North B, Lehmann A, Dunbrack RL Jr (2011) A new clustering of antibody CDR loop conformations. J Mol Biol 406(2):228–256

    Article  CAS  Google Scholar 

  26. Leem J, Dunbar J, Georges G et al (2016) ABodyBuilder: automated antibody structure prediction with data-driven accuracy estimation. mAbs 8(7):1259–1268

    Article  CAS  Google Scholar 

  27. Dunbar J, Fuchs A, Shi J et al (2013) ABangle: characterising the VH-VL orientation in antibodies. Protein Eng Des Sel 26(10):611–620

    Article  CAS  Google Scholar 

  28. Choi Y, Deane CM (2010) FREAD revisited: accurate loop structure prediction using a database search algorithm. Proteins 78(6):1431–1440

    Article  CAS  Google Scholar 

  29. Choi Y, Deane CM (2011) Predicting antibody complementarity determining region structures without classification. Mol BioSyst 7(12):3327–3334

    Article  CAS  Google Scholar 

  30. Dunbar J, Krawczyk K, Leem J et al (2014) SAbDab: the structural antibody database. Nucleic Acids Res 42(D1):D1140–D1146

    Article  CAS  Google Scholar 

  31. Fiser A, Do RK, Sali A (2000) Modeling of loops in protein structures. Protein Sci 9(9):1753–1773

    Article  CAS  Google Scholar 

  32. Marks C, Nowak J, Klostermann S et al (2017) Sphinx: merging knowledge-based and ab initio approaches to improve protein loop prediction. Bioinformatics 33(9):1346–1353

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Leem J, Georges G, Shi J et al (2018) Antibody side chain conformations are position-dependent. Proteins 86(4):383–392

    Article  CAS  Google Scholar 

  34. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  CAS  Google Scholar 

  35. Wimley WC, White SH (1996) Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol 3:842–848

    Article  CAS  Google Scholar 

  36. Hessa T, Kim H, Bihlmaier K et al (2005) Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433:377–381

    Article  CAS  Google Scholar 

  37. Eisenberg D, McLachlan AD (1986) Solvation energy in protein folding and binding. Nature 319:199–203

    Article  CAS  Google Scholar 

  38. Black SD, Mould DR (1991) Development of hydrophobicity parameters to analyse proteins which bear post- or cotranslational modifications. Anal Biochem 193:72–82

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte M. Deane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Raybould, M.I.J., Deane, C.M. (2022). The Therapeutic Antibody Profiler for Computational Developability Assessment. In: Houen, G. (eds) Therapeutic Antibodies. Methods in Molecular Biology, vol 2313. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1450-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1450-1_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1449-5

  • Online ISBN: 978-1-0716-1450-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics