Skip to main content

Exploring Liver Mitochondrial Function by 13C-Stable Isotope Breath Tests: Implications in Clinical Biochemistry

  • Protocol
  • First Online:
Mitochondrial Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2310))

Abstract

The liver is at the crossroad of key metabolic processes, which include detoxification, glycolipidic storage and export, and protein synthesis. The gut–liver axis, moreover, provides hepatocytes with a series of bacterial products and metabolites, which contribute to maintain liver function in health and disease. Breath tests (BTs) are developed as diagnostic tools for indirect, rapid, noninvasive assessment of several metabolic processes in the liver. BTs monitor the appearance of CO2 in breath as a marker of a specific substrate metabolized in the liver, typically within microsomes, cytosol, or mitochondria. The noninvasiveness of BTs originates from the use of the, nonradioactive, naturally occurring stable isotope 13C marking a specific substrate which is metabolized in the liver, leading to the appearance of 13CO2 in expired air. Some substrates (ketoisocaproic acid, methionine, and octanoic acid) provide information about dynamic liver mitochondrial function in health and disease. In humans, the application of 13C-breath tests ranges from nonalcoholic and alcoholic liver diseases to liver cirrhosis, hepatocarcinoma, preoperative and postoperative assessment of liver function, and drug-induced liver damage. 13C-BTs are an indirect, cost-effective, and easy method to evaluate dynamic liver function and gastric kinetics in health and disease, with ongoing studies focusing on further applications in clinical medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sherlock S, Dooley J (2002) Diseases of the liver and biliary system. Blackwell Science, Oxford

    Google Scholar 

  2. Sakka SG (2007) Assessing liver function. Curr Opin Crit Care 13:207–214

    Article  PubMed  Google Scholar 

  3. Grattagliano I, Lauterburg BH, Palasciano G, Portincasa P (2010) 13C-breath tests for clinical investigation of liver mitochondrial function. Eur J Clin Investig 40:843–850

    Article  CAS  Google Scholar 

  4. Gasbarrini A, Corazza GR, Gasbarrini G et al (2009) Methodology and indications of H2-breath testing in gastrointestinal diseases: the Rome consensus conference. Aliment Pharmacol Ther 29(Suppl 1):1–49

    PubMed  Google Scholar 

  5. Merkel C, Bolognesi M, Bellon S et al (1992) Aminopyrine breath test in the prognostic evaluation of patients with cirrhosis. Gut 33:836–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grattagliano I, Bonfrate L, Lorusso M, Castorani L, de Bari O, Portincasa P (2015) Exploring liver mitochondrial function by (1)(3)C-stable isotope breath tests: implications in clinical biochemistry. Methods Mol Biol 1241:137–152

    Article  CAS  PubMed  Google Scholar 

  7. Bonfrate L, Grattagliano I, Palasciano G, Portincasa P (2015) Dynamic carbon 13 breath tests for the study of liver function and gastric emptying. Gastroenterol Rep (Oxf) 3:12–21

    Article  Google Scholar 

  8. Armuzzi A, Candelli M, Zocco MA et al (2002) Review article: breath testing for human liver function assessment. Aliment Pharmacol Ther 16:1977–1996

    Article  CAS  PubMed  Google Scholar 

  9. Michaletz PA, Cap L, Alpert E, Lauterburg BH (1989) Assessment of mitochondrial function in vivo with a breath test utilizing alpha-ketoisocaproic acid. Hepatology 10:829–832

    Article  CAS  PubMed  Google Scholar 

  10. Gorowska-Kowolik K, Chobot A, Kwiecien J (2017) (13)C Methacetin breath test for assessment of microsomal liver function: methodology and clinical application. Gastroenterol Res Pract 2017:7397840

    Article  PubMed  PubMed Central  Google Scholar 

  11. Festi D, Capodicasa S, Sandri L et al (2005) Measurement of hepatic functional mass by means of 13C-methacetin and 13C-phenylalanine breath tests in chronic liver disease: comparison with child-Pugh score and serum bile acid levels. World J Gastroenterol 11:142–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ilan Y (2007) Review article: the assessment of liver function using breath tests. Aliment Pharmacol Ther 26:1293–1302

    Article  CAS  PubMed  Google Scholar 

  13. Stravitz RT, Reuben A, Mizrahi M et al (2015) Use of the methacetin breath test to classify the risk of cirrhotic complications and mortality in patients evaluated/listed for liver transplantation. J Hepatol 63:1345–1351

    Article  PubMed  Google Scholar 

  14. Fierbinteanu-Braticevici C, Plesca DA, Tribus L, Panaitescu E, Braticevici B (2013) The role of (1)(3)C-methacetin breath test for the non-invasive evaluation of nonalcoholic fatty liver disease. J Gastrointestin Liver Dis 22:149–156

    PubMed  Google Scholar 

  15. Diogo CV, Grattagliano I, Oliveira PJ, Bonfrate L, Portincasa P (2011) Re-wiring the circuit: mitochondria as a pharmacological target in liver disease. Curr Med Chem 18:5448–5465

    Article  CAS  PubMed  Google Scholar 

  16. Grattagliano I, Russmann S, Diogo C et al (2011) Mitochondria in chronic liver disease. Curr Drug Targets 12:879–893

    Article  CAS  PubMed  Google Scholar 

  17. Guerrieri F, Nicoletti C, Adorisio E et al (2000) Correlation between decreased expression of mitochondrial F0F1-ATP synthase and low regenerating capability of the liver after partial hepatectomy in hypothyroid rats. J Bioenerg Biomembr 32:183–191

    Article  CAS  PubMed  Google Scholar 

  18. Grattagliano I, De Bari O, Di Palo D et al (2018) Mitochondria in liver diseases. In: Oliveira P (ed) Mitochondrial biology and experimental therapeutics. Springer Nature, Cham, pp 91–126. https://doi.org/10.1007/978-3-319-73344-9

    Chapter  Google Scholar 

  19. Lopaschuk GD, Belke DD, Gamble J, Itoi T, Schonekess BO (1994) Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta 1213:263–276

    Article  CAS  PubMed  Google Scholar 

  20. Kerner J, Hoppel C (2000) Fatty acid import into mitochondria. Biochim Biophys Acta 1486:1–17

    Article  CAS  PubMed  Google Scholar 

  21. Serviddio G, Giudetti AM, Bellanti F et al (2011) Oxidation of hepatic carnitine palmitoyl transferase-I (CPT-I) impairs fatty acid beta-oxidation in rats fed a methionine-choline deficient diet. PLoS One e24084:6

    Google Scholar 

  22. Sunny NE, Parks EJ, Browning JD, Burgess SC (2011) Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab 14:804–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schmid AI, Szendroedi J, Chmelik M, Krssak M, Moser E, Roden M (2011) Liver ATP synthesis is lower and relates to insulin sensitivity in patients with type 2 diabetes. Diabetes Care 34:448–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Peng KY, Watt MJ, Rensen S et al (2018) Mitochondrial dysfunction-related lipid changes occur in nonalcoholic fatty liver disease progression. J Lipid Res 59:1977–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Koliaki C, Szendroedi J, Kaul K et al (2015) Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab 21:739–746

    Article  CAS  PubMed  Google Scholar 

  26. Fletcher JA, Deja S, Satapati S, Fu X, Burgess SC, Browning JD (2019) Impaired ketogenesis and increased acetyl-CoA oxidation promote hyperglycemia in human fatty liver. JCI Insight 5:e127737

    Article  Google Scholar 

  27. Lee WS, Sokol RJ (2007) Liver disease in mitochondrial disorders. Semin Liver Dis 27:259–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Russmann S, Kullak-Ublick GA, Grattagliano I (2009) Current concepts of mechanisms in drug-induced hepatotoxicity. Curr Med Chem 16:3041–3053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grattagliano I, Bonfrate L, Diogo CV, Wang HH, Wang DQ, Portincasa P (2009) Biochemical mechanisms in drug-induced liver injury: certainties and doubts. World J Gastroenterol 15:4865–4876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grattagliano I, Portincasa P, D’Ambrosio G, Palmieri VO, Palasciano G (2010) Avoiding drug interactions: here’s help. J Fam Pract 59:322–329

    PubMed  Google Scholar 

  31. Grasselli E, Baldini F, Vecchione G et al (2019) Excess fructose and fatty acids trigger a model of nonalcoholic fatty liver disease progression in vitro: protective effect of the flavonoid silybin. Int J Mol Med 44:705–712

    CAS  PubMed  Google Scholar 

  32. Grattagliano I, de Bari O, Bernardo TC, Oliveira PJ, Wang DQ, Portincasa P (2012) Role of mitochondria in nonalcoholic fatty liver disease--from origin to propagation. Clin Biochem 45:610–618

    Article  CAS  PubMed  Google Scholar 

  33. Palmieri VO, Grattagliano I, Minerva F, Pollice S, Palasciano G, Portincasa P (2009) Liver function as assessed by breath tests in patients with hepatocellular carcinoma. J Surg Res 157:199–207

    Article  PubMed  Google Scholar 

  34. Vecchione G, Grasselli E, Voci A et al (2016) Silybin counteracts lipid excess and oxidative stress in cultured steatotic hepatic cells. World J Gastroenterol 22:6016–6026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nadanaciva S, Will Y (2011) New insights in drug-induced mitochondrial toxicity. Curr Pharm Des 17:2100–2112

    Article  CAS  PubMed  Google Scholar 

  36. Pereira CV, Nadanaciva S, Oliveira PJ, Will Y (2012) The contribution of oxidative stress to drug-induced organ toxicity and its detection in vitro and in vivo. Expert Opin Drug Metab Toxicol 8:219–237

    Article  CAS  PubMed  Google Scholar 

  37. Masuo Y, Imai T, Shibato J et al (2009) Omic analyses unravels global molecular changes in the brain and liver of a rat model for chronic sake (Japanese alcoholic beverage) intake. Electrophoresis 30:1259–1275

    Article  CAS  PubMed  Google Scholar 

  38. Griffin JL, Nicholls AW (2006) Metabolomics as a functional genomic tool for understanding lipid dysfunction in diabetes, obesity and related disorders. Pharmacogenomics 7:1095–1107

    Article  CAS  PubMed  Google Scholar 

  39. Ajaz S, Czajka A, Malik A (2015) Accurate measurement of circulating mitochondrial DNA content from human blood samples using real-time quantitative PCR. Methods Mol Biol 1264:117–131

    Article  CAS  PubMed  Google Scholar 

  40. Malik AN, Czajka A (2013) Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion 13:481–492

    Article  CAS  PubMed  Google Scholar 

  41. Afolabi PR, Scorletti E, Smith DE, Almehmadi AA, Calder PC, Byrne CD (2018) The characterisation of hepatic mitochondrial function in patients with non-alcoholic fatty liver disease (NAFLD) using the 13C-ketoisocaproate breath test. J Breath Res 046002:12

    Google Scholar 

  42. Portincasa P, Grattagliano I, Lauterburg BH, Palmieri VO, Palasciano G, Stellaard F (2006) Liver breath tests non-invasively predict higher stages of non-alcoholic steatohepatitis. Clin Sci (Lond) 111:135–143

    Article  CAS  Google Scholar 

  43. Krahenbuhl L, Ledermann M, Lang C, Krahenbuhl S (2000) Relationship between hepatic mitochondrial functions in vivo and in vitro in rats with carbon tetrachloride-induced liver cirrhosis. J Hepatol 33:216–223

    Article  CAS  PubMed  Google Scholar 

  44. Lauterburg BH, Grattagliano I, Gmur R, Stalder M, Hildebrand P (1995) Noninvasive assessment of the effect of xenobiotics on mitochondrial function in human beings: studies with acetylsalicylic acid and ethanol with the use of the carbon 13-labeled ketoisocaproate breath test. J Lab Clin Med 125:378–383

    CAS  PubMed  Google Scholar 

  45. Lauterburg BH, Liang D, Schwarzenbach FA, Breen KJ (1993) Mitochondrial dysfunction in alcoholic patients as assessed by breath analysis. Hepatology 17:418–422

    Article  CAS  PubMed  Google Scholar 

  46. Armuzzi A, Marcoccia S, Zocco MA et al (2000) Non-invasive assessment of human hepatic mitochondrial function through the 13C-methionine breath test. Scand J Gastroenterol 35:650–653

    Article  CAS  PubMed  Google Scholar 

  47. Russmann S, Junker E, Lauterburg BH (2002) Remethylation and transsulfuration of methionine in cirrhosis: studies with L-[H3-methyl-1-C]methionine. Hepatology 36:1190–1196

    Article  CAS  PubMed  Google Scholar 

  48. Banasch M, Ellrichmann M, Tannapfel A, Schmidt WE, Goetze O (2011) The non-invasive (13)C-methionine breath test detects hepatic mitochondrial dysfunction as a marker of disease activity in non-alcoholic steatohepatitis. Eur J Med Res 16:258–264

    Article  CAS  PubMed  Google Scholar 

  49. Banasch M, Emminghaus R, Ellrichmann M, Schmidt WE, Goetze O (2008) Longitudinal effects of hepatitis C virus treatment on hepatic mitochondrial dysfunction assessed by C-methionine breath test. Aliment Pharmacol Ther 28:443–449

    Article  CAS  PubMed  Google Scholar 

  50. Spahr L, Negro F, Leandro G et al (2003) Impaired hepatic mitochondrial oxidation using the 13C-methionine breath test in patients with macrovesicular steatosis and patients with cirrhosis. Med Sci Monit 9:CR6–CR11

    CAS  PubMed  Google Scholar 

  51. Stuwe SH, Goetze O, Arning L et al (2011) Hepatic mitochondrial dysfunction in Friedreich ataxia. BMC Neurol 11:145

    Article  PubMed  PubMed Central  Google Scholar 

  52. Miele L, Grieco A, Armuzzi A et al (2003) Hepatic mitochondrial beta-oxidation in patients with nonalcoholic steatohepatitis assessed by 13 C-octanoate breath test. Am J Gastroenterol 98:2335

    Article  PubMed  Google Scholar 

  53. Schneider ARJ, Kraut C, Lindenthal B, Braden B, Caspary WF, Stein J (2005) Total body metabolism of 13C-octanoic acid is preserved in patients with non-alcoholic steatohepatitis, but differs between women and men. Eur J Gastroenterol Hepatol 17:1181–1184

    Article  CAS  PubMed  Google Scholar 

  54. Miele L, Marrone G, Cefalo C et al (2013) Potential use of liver function breath tests in the clinical practice. Eur Rev Med Pharmacol Sci 17(Suppl 2):82–89

    PubMed  Google Scholar 

  55. Giannini E, Fasoli A, Chiarbonello B et al (2002) 13C-aminopyrine breath test to evaluate severity of disease in patients with chronic hepatitis C virus infection. Aliment Pharmacol Ther 16:717–725

    Article  CAS  PubMed  Google Scholar 

  56. Grattagliano I, Vendemiale G, Lauterburg BH (1999) Reperfusion injury of the liver: role of mitochondria and protection by glutathione ester. J Surg Res 86:2–8

    Article  CAS  PubMed  Google Scholar 

  57. Berthold HK, Giesen TA, Gouni-Berthold I (2009) The stable isotope ketoisocaproic acid breath test as a measure of hepatic decarboxylation capacity: a quantitative analysis in normal subjects after oral and intravenous administration. Liver Int 29:1356–1364

    Article  CAS  PubMed  Google Scholar 

  58. Witschi A, Mossi S, Meyer B, Junker E, Lauterburg BH (1994) Mitochondrial function reflected by the decarboxylation of [13C]ketoisocaproate is impaired in alcoholics. Alcohol Clin Exp Res 18:951–955

    Article  CAS  PubMed  Google Scholar 

  59. Bendtsen P, Hannestad U, Pahlsson P (1998) Evaluation of the carbon 13-labeled Ketoisocaproate breath test to assess mitochondrial dysfunction in patients with high alcohol consumption. Alcohol Clin Exp Res 22:1792–1795

    Article  CAS  PubMed  Google Scholar 

  60. Bonfrate L, Giuliante F, Palasciano G, Lamont JT, Portincasa P (2013) Unexpected discovery of massive liver echinococcosis. A clinical, morphological, and functional diagnosis. Ann Hepatol 12:634–641

    Article  CAS  PubMed  Google Scholar 

  61. Pessayre D, Mansouri A, Haouzi D, Fromenty B (1999) Hepatotoxicity due to mitochondrial dysfunction. Cell Biol Toxicol 15:367–373

    Article  CAS  PubMed  Google Scholar 

  62. Danicke S, Diers S (2013) Effects of ergot alkaloids on liver function of piglets as evaluated by the (13)C-methacetin and (13)C-alpha-ketoisocaproic acid breath test. Toxins (Basel) 5:139–161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Storch KJ, Wagner DA, Burke JF, Young VR (1988) Quantitative study in vivo of methionine cycle in humans using [methyl-2H3]- and [1-13C]methionine. Am J Phys 255:E322–E331

    CAS  Google Scholar 

  64. Milazzo L, Piazza M, Sangaletti O et al (2005) [13C]methionine breath test: a novel method to detect antiretroviral drug-related mitochondrial toxicity. J Antimicrob Chemother 55:84–89

    Article  CAS  PubMed  Google Scholar 

  65. Li Y, Boehning DF, Qian T, Popov VL, Weinman SA (2007) Hepatitis C virus core protein increases mitochondrial ROS production by stimulation of Ca2+ uniporter activity. FASEB J 21:2474–2485

    Article  CAS  PubMed  Google Scholar 

  66. Durr A, Cossee M, Agid Y et al (1996) Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 335:1169–1175

    Article  CAS  PubMed  Google Scholar 

  67. Walton ME, Ebert D, Haller RG (2003) Octanoate oxidation measured by 13C-NMR spectroscopy in rat skeletal muscle, heart, and liver. J Appl Physiol (1985) 95:1908–1916

    Article  CAS  Google Scholar 

  68. Ghoos YF, Maes BD, Geypens BJ et al (1993) Measurement of gastric emptying rate of solids by means of a carbon-labeled octanoic acid breath test. Gastroenterology 104:1640–1647

    Article  CAS  PubMed  Google Scholar 

  69. Perri F, Bellini M, Portincasa P et al (2010) (13)C-octanoic acid breath test (OBT) with a new test meal (EXPIROGer): toward standardization for testing gastric emptying of solids. Dig Liver Dis 42:549–553

    Article  PubMed  Google Scholar 

  70. Shalev T, Aeed H, Sorin V et al (2010) Evaluation of the 13C-octanoate breath test as a surrogate marker of liver damage in animal models. Dig Dis Sci 55:1589–1598

    Article  PubMed  Google Scholar 

  71. van de Casteele M, Luypaerts A, Geypens B, Fevery J, Ghoos Y, Nevens F (2003) Oxidative breakdown of octanoic acid is maintained in patients with cirrhosis despite advanced disease. Neurogastroenterol Motil 15:113–120

    Article  PubMed  Google Scholar 

  72. Grattagliano I, Bonfrate L, Oliveira PJ et al (2013) Breath tests with novel 13C-substrates for clinical studies of liver mitochondrial function in health and disease. Eur Rev Med Pharmacol Sci 17(Suppl 2):72–81

    PubMed  Google Scholar 

  73. Jaeschke H, McGill MR, Ramachandran A (2012) Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab Rev 44:88–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nakagawa Y, Suzuki T, Kamimura H, Nagai F (2006) Role of mitochondrial membrane permeability transition in N-nitrosofenfluramine-induced cell injury in rat hepatocytes. Eur J Pharmacol 529:33–39

    Article  CAS  PubMed  Google Scholar 

  75. Trost LC, Lemasters JJ (1997) Role of the mitochondrial permeability transition in salicylate toxicity to cultured rat hepatocytes: implications for the pathogenesis of Reye’s syndrome. Toxicol Appl Pharmacol 147:431–441

    Article  CAS  PubMed  Google Scholar 

  76. Mingatto FE, dos Santos AC, Rodrigues T, Pigoso AA, Uyemura SA, Curti C (2000) Effects of nimesulide and its reduced metabolite on mitochondria. Br J Pharmacol 131:1154–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kass GE, Price SC (2008) Role of mitochondria in drug-induced cholestatic injury. Clin Liver Dis 12:27–51, vii

    Article  PubMed  Google Scholar 

  78. Candelli M, Miele L, Armuzzi A et al (2008) 13C-methionine breath tests for mitochondrial liver function assessment. Eur Rev Med Pharmacol Sci 12:245–249

    CAS  PubMed  Google Scholar 

  79. Duro D, Duggan C, Valim C et al (2009) Novel intravenous (13)C-methionine breath test as a measure of liver function in children with short bowel syndrome. J Pediatr Surg 44:236–240; discussion 240

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bromer MQ, Kantor SB, Wagner DA, Knight LC, Maurer AH, Parkman HP (2002) Simultaneous measurement of gastric emptying with a simple muffin meal using [13C]octanoate breath test and scintigraphy in normal subjects and patients with dyspeptic symptoms. Dig Dis Sci 47:1657–1663

    Article  PubMed  Google Scholar 

  81. Dawson B, Trapp RG (2001) Basic & clinical biostatistics, vol 3rd. McGraw-Hill, New York

    Google Scholar 

  82. Hintze J (2015) NCSS 10 statistical software. NCSS, LLC. Kaysville, Utah, USA, ncss.com/software/ncss. Number Cruncher Statistical System (NCSS), Kaysville, Utah

  83. Winchell HS, Wiley K (1970) Considerations in analysis of breath 14CO2 data. J Nucl Med 11:708–710

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

These projects received funding from the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 722619 (FOIE GRAS) and Grant Agreement No. 734719 (mtFOIE GRAS). EMM and HS are recipients of Marie Skłodowska-Curie Grant Agreement No. 722619. We thank Rosa De Venuto, Paola De Benedictis, and Michele Persichella for skillful technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Portincasa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Molina-Molina, E., Shanmugam, H., Di Palo, D., Grattagliano, I., Portincasa, P. (2021). Exploring Liver Mitochondrial Function by 13C-Stable Isotope Breath Tests: Implications in Clinical Biochemistry. In: Palmeira, C.M., Rolo, A.P. (eds) Mitochondrial Regulation. Methods in Molecular Biology, vol 2310. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1433-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1433-4_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1432-7

  • Online ISBN: 978-1-0716-1433-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics