Skip to main content

A Protoplast-Based Bioassay to Quantify Strigolactone Activity in Arabidopsis Using StrigoQuant

  • Protocol
  • First Online:
Strigolactones

Abstract

Understanding the biological background of strigolactone (SL) structural diversity and the SL signaling pathway at molecular level requires quantitative and sensitive tools that precisely determine SL dynamics. Such biosensors may be also very helpful in screening for SL analogs and mimics with defined biological functions.

Recently, the genetically encoded, ratiometric sensor StrigoQuant was developed and allowed the quantification of the activity of a wide concentration range of SLs. StrigoQuant can be used for studies on the biosynthesis, function and signal transduction of this hormone class.

Here, we provide a comprehensive protocol for establishing the use of StrigoQuant in Arabidopsis protoplasts. We first describe the generation and transformation of the protoplasts with StrigoQuant and detail the application of the synthetic SL analogue GR24. We then show the recording of the luminescence signal and how the obtained data are processed and used to assess/determine SL perception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Babili S, Bouwmeester HJ (2015) Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol 66:161–186

    Article  CAS  Google Scholar 

  2. Jia K-P, Li C, Bouwmeester HJ, Al-Babili S (2019) Strigolactone biosynthesis and signal transduction. In: Strigolactones-biology and applications. Springer, New York, pp 1–45

    Google Scholar 

  3. Xie X (2016) Structural diversity of strigolactones and their distribution in the plant kingdom. J Pest Sci 41:175–180

    Article  CAS  Google Scholar 

  4. Wang Y, Bouwmeester HJ (2018) Structural diversity in the strigolactones. J Exp Bot 69:2219–2230

    Article  CAS  Google Scholar 

  5. Nakamura H, Xue Y-L, Miyakawa T, Hou F, Qin H-M, Fukui K, Shi X, Ito E, Ito S, Park S-H, Miyauchi Y, Asano A, Totsuka N, Ueda T, Tanokura M, Asami T (2013) Molecular mechanism of strigolactone perception by DWARF14. Nat Commun 4:2613

    Article  Google Scholar 

  6. Seto Y, Yasui R, Kameoka H, Tamiru M, Cao M, Terauchi R, Sakurada A, Hirano R, Kisugi T, Hanada A, Umehara M, Seo E, Akiyama K, Burke J, Takeda-Kamiya N, Li W, Hirano Y, Hakoshima T, Mashiguchi K, Noel JP, Kyozuka J, Yamaguchi S (2019) Strigolactone perception and deactivation by a hydrolase receptor DWARF14. Nat Commun 10:191

    Article  Google Scholar 

  7. Hu Q, He Y, Wang L, Liu S, Meng X, Liu G, Jing Y, Chen M, Song X, Jiang L, Yu H, Wang B, Li J (2017) DWARF14, a receptor covalently linked with the active form of strigolactones, undergoes strigolactone-dependent degradation in rice. Front Plant Sci 8:1935

    Article  Google Scholar 

  8. Hamiaux C, Drummond RSM, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD, Snowden KC (2012) DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol 22:2032–2036

    Article  CAS  Google Scholar 

  9. Wang L, Wang B, Jiang L, Liu X, Li X, Lu Z, Meng X, Wang Y, Smith SM, Li J (2015) Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-like SMXL repressor proteins for ubiquitination and degradation. Plant Cell 27:3128–3142

    Article  CAS  Google Scholar 

  10. Marzec M (2016) Perception and signaling of strigolactones. Front Plant Sci 7:1260

    Article  Google Scholar 

  11. Bürger M, Chory J (2020) The many models of strigolactone signaling. Trends Plant Sci 25:395–405

    Article  Google Scholar 

  12. Samodelov SL, Beyer HM, Guo X, Augustin M, Jia K-P, Baz L, Ebenho HO, Beyer P, Weber W, Al-Babili S, Zurbriggen MD (2016) StrigoQuant: a genetically encoded biosensor for quantifying strigolactone activity and specificity. Sci Adv 2:e1601266–e1601266

    Article  Google Scholar 

  13. Burén S, Ortega-Villasante C, Otvös K, Samuelsson G, Bakó L, Villarejo A (2012) Use of the foot-and-mouth disease virus 2A peptide co-expression system to study intracellular protein trafficking in Arabidopsis. PLoS One 7:e51973

    Article  Google Scholar 

  14. Wend S, Bosco CD, Kämpf MM, Ren F, Palme K, Weber W, Dovzhenko A, Zurbriggen MD (2013) A quantitative ratiometric sensor for time-resolved analysis of auxin dynamics. Sci Rep 3:2052

    Article  Google Scholar 

  15. Braguy J, Zurbriggen MD (2016) Synthetic strategies for plant signalling studies: molecular toolbox and orthogonal platforms. Plant J 87:118–138

    Article  CAS  Google Scholar 

  16. Tsuchiya Y (2018) Small molecule toolbox for strigolactone biology. Plant Cell Physiol 59:1511–1519

    Article  CAS  Google Scholar 

  17. Chesterfield RJ, Whitfield JH, Pouvreau B, Cao D, Beveridge CA, Vickers CE (2020) Rational design of novel fluorescent enzyme biosensors for direct detection of strigolactones. ACS Synth Biol 9(8):2107–2118

    Article  CAS  Google Scholar 

  18. Ochoa-Fernandez R, Samodelov SL, Brandl SM, Wehinger E, Müller K, Weber W, Zurbriggen MD (2016) Optogenetics in plants: red/far-red light control of gene expression. In: Kianianmomeni A (ed) Optogenetics: methods and protocols. Springer, New York, pp 125–139

    Chapter  Google Scholar 

  19. Dovzhenko A, Dal Bosco C, Meurer J, Koop HU (2003) Efficient regeneration from cotyledon protoplasts in Arabidopsis thaliana. Protoplasma 222:107–111

    Article  CAS  Google Scholar 

  20. Jacobs JL (2004) Systematic analysis of bicistronic reporter assay data. Nucleic Acids Res 32:e160–e160

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the baseline funding and Competitive Research Grant 4 (CRG4) given to S.A. from King Abdullah University of Science and Technology and Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (CEPLAS—EXC-2048/—Project ID 390686111) to M.D.Z. and the iGRAD Plant (IRTG 1525) to R.O.F. and M.D.Z. We thank Maximilian Augustin and Hannes Beyer for preliminary work on the sensors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matias D. Zurbriggen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Braguy, J., Samodelov, S.L., Andres, J., Ochoa-Fernandez, R., Al-Babili, S., Zurbriggen, M.D. (2021). A Protoplast-Based Bioassay to Quantify Strigolactone Activity in Arabidopsis Using StrigoQuant. In: Prandi, C., Cardinale, F. (eds) Strigolactones. Methods in Molecular Biology, vol 2309. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1429-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1429-7_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1428-0

  • Online ISBN: 978-1-0716-1429-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics