Skip to main content

High Confidence Shotgun Lipidomics Using Structurally Selective Ion Mobility-Mass Spectrometry

Part of the Methods in Molecular Biology book series (MIMB,volume 2306)

Abstract

Ion mobility (IM) is a gas phase separation strategy that can either supplement or serve as a high-throughput alternative to liquid chromatography (LC) in shotgun lipidomics. Incorporating the IM dimension in untargeted lipidomics workflows can help resolve isomeric lipids, and the collision cross section (CCS) values obtained from the IM measurements can provide an additional molecular descriptor to increase lipid identification confidence. This chapter provides a broad overview of an untargeted ion mobility-mass spectrometry (IM-MS) workflow using a commercial drift tube ion mobility-quadrupole-time-of-flight mass spectrometer (IM-QTOF) for high confidence lipidomics.

Key words

  • Drift tube ion mobility spectrometry
  • Ion mobility spectrometry
  • Collision cross section
  • Tandem MS/MS
  • Lipidomics

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-1410-5_2
  • Chapter length: 27 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-1410-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Harris RA, Leaptrot KL, May JC et al (2019) New frontiers in lipidomics analyses using structurally selective ion mobility-mass spectrometry. TrAC Trends Anal Chem 116:316–323

    CAS  CrossRef  Google Scholar 

  2. Hancock SE, Poad BLJ, Batarseh A et al (2017) Advances and unresolved challenges in the structural characterization of isomeric lipids. Anal Biochem 524:45–55

    CAS  CrossRef  Google Scholar 

  3. Zheng X, Smith RD, Baker ES (2018) Recent advances in lipid separations and structural elucidation using mass spectrometry combined with ion mobility spectrometry, ion-molecule reactions and fragmentation approaches. Curr Opin Chem Biol 42:111–118

    CAS  CrossRef  Google Scholar 

  4. May JC, McLean JA (2015) Ion mobility-mass spectrometry: time-dispersive instrumentation. Anal Chem 87(3):1422–1436

    CAS  CrossRef  Google Scholar 

  5. Wang C, Wang M, Han X (2015) Applications of mass spectrometry for cellular lipid analysis. Mol BioSyst 11:698–713

    CrossRef  Google Scholar 

  6. Han X, Yang K, Gross RW (2012) Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom Rev 31:134–178

    CAS  CrossRef  Google Scholar 

  7. Koelmel JP, Ulmer CZ, Jones CM et al (2017) Common cases of improper lipid annotation using high-resolution tandem mass spectrometry data and corresponding limitations in biological interpretation. Biochim Biophys Acta Mol Cell Biol Lipids 1862:766–770

    CAS  CrossRef  Google Scholar 

  8. Wishart DS, Feunang YD, Marcu A et al (2018) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46:D608–D617

    CAS  CrossRef  Google Scholar 

  9. Kliman M, May JC, McLean JA (2011) Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids 1811:935–945

    CAS  CrossRef  Google Scholar 

  10. Paglia G, Kliman M, Claude E et al (2015) Applications of ion-mobility mass spectrometry for lipid analysis. Anal Bioanal Chem 407:4995–5007

    CAS  CrossRef  Google Scholar 

  11. Mason EA, McDaniel EW (1988) Transport properties of ions in gases. Wiley, New York, NY

    CrossRef  Google Scholar 

  12. Dodds JN, May JC, McLean JA (2017) Investigation of the complete suite of the leucine and isoleucine isomers: toward prediction of ion mobility separation capabilities. Anal Chem 89:952–959

    CAS  CrossRef  Google Scholar 

  13. Groessl M, Graf S, Knochenmuss R (2015) High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140:6904–6911

    CAS  CrossRef  Google Scholar 

  14. Kyle JE, Zhang X, Weitz KK et al (2016) Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry. Analyst 141:1649–1659

    CAS  CrossRef  Google Scholar 

  15. Fenn LS, Kliman M, Mahsut A et al (2009) Characterizing ion mobility-mass spectrometry conformation space for the analysis of complex biological samples. Anal Bioanal Chem 394:235–244

    CAS  CrossRef  Google Scholar 

  16. May JC, Goodwin CR, Lareau NM et al (2014) Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer. Anal Chem 86:2107–2116

    CAS  CrossRef  Google Scholar 

  17. Picache JA, Rose BS, Balinski A et al (2019) Collision cross section compendium to annotate and predict multi-omic compound identities. Chem Sci 10:983–993

    CAS  CrossRef  Google Scholar 

  18. Leaptrot KL, May JC, Dodds JN et al (2019) Ion mobility conformational lipid atlas for high confidence lipidomics. Nat Commun 10:985

    CrossRef  Google Scholar 

  19. Stow SM, Causon TJ, Zheng X et al (2017) An interlaboratory evaluation of drift tube ion mobility-mass spectrometry collision cross section measurements. Anal Chem 89:9048–9055

    CAS  CrossRef  Google Scholar 

  20. Matyash V, Liebisch G, Kurzchalia TV et al (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 49:1137–1146

    CAS  CrossRef  Google Scholar 

  21. Ulmer CZ, Jones CM, Yost RA et al (2018) Optimization of Folch, Bligh-Dyer, and Matyash sample-to-extraction solvent ratios for human plasma-based lipidomics studies. Anal Chim Acta 1037:351–357

    CAS  CrossRef  Google Scholar 

  22. Morris CB, May JC, Leaptrot KL et al (2019) Evaluating separation selectivity and collision cross section measurement reproducibility in helium, nitrogen, argon, and carbon dioxide drift gases for drift tube ion mobility–mass spectrometry. J Am Soc Mass Spectrom 30:1059–1068

    CAS  CrossRef  Google Scholar 

  23. Kurulugama RT, Darland E, Kuhlmann F et al (2015) Evaluation of drift gas selection in complex sample analyses using a high performance drift tube ion mobility-QTOF mass spectrometer. Analyst 140:6834–6844

    CAS  CrossRef  Google Scholar 

  24. May JC, Dodds JN, Kurulugama RT et al (2015) Broadscale resolving power performance of a high precision uniform field ion mobility-mass spectrometer. Analyst 140:6824–6833

    CAS  CrossRef  Google Scholar 

  25. Mahieu NG, Spalding JL, Gelman SJ et al (2016) Defining and detecting complex peak relationships in mass spectral data: the Mz.unity algorithm. Anal Chem 88:9037–9046

    CAS  CrossRef  Google Scholar 

  26. Mahieu NG, Patti GJ (2017) Systems-level annotation of a metabolomics data set reduces 25,000 features to fewer than 1000 unique metabolites. Anal Chem 89:10397–10406

    CAS  CrossRef  Google Scholar 

  27. Zheng X, Aly NA, Zhou Y et al (2017) A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem Sci 8:7724–7736

    CAS  CrossRef  Google Scholar 

  28. Hoaglund-Hyzer CS, Li J, Clemmer DE (2000) Mobility labeling for parallel CID of ion mixtures. Anal Chem 72:2737–2740

    CAS  CrossRef  Google Scholar 

  29. Navas-Iglesias N, Carrasco-Pancorbo A, Cuadros-Rodríguez L (2009) From lipids analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st century. Part II: analytical lipidomics. TrAC Trends Anal Chem 28:393–403

    CAS  CrossRef  Google Scholar 

  30. Pati S, Nie B, Arnold RD et al (2016) Extraction, chromatographic and mass spectrometric methods for lipid analysis. Biomed Chromatogr 30:695–709

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgments

This work was supported in part using the resources of the Center for Innovative Technology (CIT) at Vanderbilt University. BSR acknowledges a fellowship from the Vanderbilt Institute for Chemical Biology (VICB). Financial support was provided by the National Institutes of Health (R01GM107978) and the U.S. Environmental Protection Agency (EPA) under Assistance Agreement No. 83573601. This work has not been formally reviewed by the EPA and EPA does not endorse any products or commercial services mentioned in this document. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the EPA or the U.S. Government.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Rose, B.S., Leaptrot, K.L., Harris, R.A., Sherrod, S.D., May, J.C., McLean, J.A. (2021). High Confidence Shotgun Lipidomics Using Structurally Selective Ion Mobility-Mass Spectrometry. In: Hsu, FF. (eds) Mass Spectrometry-Based Lipidomics. Methods in Molecular Biology, vol 2306. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1410-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1410-5_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1409-9

  • Online ISBN: 978-1-0716-1410-5

  • eBook Packages: Springer Protocols