Skip to main content

Comprehensive Mouse Skin Ceramide Analysis on a Solid-Phase and TLC Separation with High-Resolution Mass Spectrometry Platform

  • Protocol
  • First Online:
Mass Spectrometry-Based Lipidomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2306))

  • 1096 Accesses

Abstract

Lipidomic analyses by mass spectrometry (MS) of epidermal ceramides, a large family of lipids crucial to the permeability barrier of the skin, have been reported previously. To ensure the accuracy of lipid identification, we describe here the isolation of mouse newborn epidermal lipids followed by fractionation with solid-phase extraction columns, and lipidomic analyses by high-resolution MS for structural identification. We also describe here the employment of thin layer chromatography, an old but useful tool, in facilitating the structural characterization of the epidermal lipid species by MS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garidel P, Fölting B, Schaller I, Kerth A (2010) The microstructure of the stratum corneum lipid barrier: mid-infrared spectroscopic studies of hydrated ceramide:palmitic acid:cholesterol model systems. Biophys Chem 150(1–3):144–156. https://doi.org/10.1016/j.bpc.2010.03.008

    Article  CAS  PubMed  Google Scholar 

  2. Imokawa G, Akasaki S, Hattori M, Yoshizuka N (1986) Selective recovery of deranged water-holding properties by stratum corneum lipids. J Invest Dermatol 87(6):758–761

    Article  CAS  Google Scholar 

  3. Imokawa G, Akasaki S, Minematsu Y, Kawai M (1989) Importance of intercellular lipids in water-retention properties of the stratum corneum: induction and recovery study of surfactant dry skin. Arch Dermatol Res 281(1):45–51

    Article  CAS  Google Scholar 

  4. Mizutani Y, Mitsutake S, Tsuji K, Kihara A, Igarashi Y (2009) Ceramide biosynthesis in keratinocyte and its role in skin function. Biochimie 91(6):784–790. https://doi.org/10.1016/j.biochi.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  5. Gennis RB (1989) Biomembranes-molecular structure and function. Springer-Verlag, New York

    Book  Google Scholar 

  6. Mullen TD, Obeid LM (2012) Ceramide and apoptosis: exploring the enigmatic connections between sphingolipid metabolism and programmed cell death. Anti Cancer Agents Med Chem 12(4):340–363

    Article  CAS  Google Scholar 

  7. Hannun YA, Luberto C (2000) Ceramide in the eukaryotic stress response. Trends Cell Biol 10(2):73–80. https://doi.org/10.1016/S0962-8924(99)01694-3

    Article  CAS  PubMed  Google Scholar 

  8. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9(2):139–150

    Article  CAS  Google Scholar 

  9. Rabionet M, Gorgas K, Sandhoff R (2014) Ceramide synthesis in the epidermis. Biochim Biophys Acta 1841(3):422–434. https://doi.org/10.1016/j.bbalip.2013.08.011

    Article  CAS  PubMed  Google Scholar 

  10. Elias PM, Gruber R, Crumrine D, Menon G, Williams ML, Wakefield JS, Holleran WM, Uchida Y (2014) Formation and functions of the corneocyte lipid envelope (CLE). Biochim Biophys Acta 1841(3):314–318. https://doi.org/10.1016/j.bbalip.2013.09.011

    Article  CAS  PubMed  Google Scholar 

  11. Ann Q, Adams J (1993) Structure-specific collision-induced fragmentations of ceramides cationized with alkali-metal ions. Anal Chem 65(1):7–13. https://doi.org/10.1021/ac00049a004

    Article  CAS  Google Scholar 

  12. Hsu F-F (2016) Complete structural characterization of ceramides as [M−H] ions by multiple-stage linear ion trap mass spectrometry. Biochimie 130:63–75. https://doi.org/10.1016/j.biochi.2016.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hsu FF, Turk J, Stewart ME, Downing DT (2002) Structural studies on ceramides as lithiated adducts by low energy collisional-activated dissociation tandem mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom 13(6):680–695

    Article  CAS  Google Scholar 

  14. Hsu F-F, Turk J (2002) Characterization of ceramides by low energy collisional-activated dissociation tandem mass spectrometry with negative-ion electrospray ionization. J Am Soc Mass Spectrom 13(5):558–570. https://doi.org/10.1016/s1044-0305(02)00358-6

    Article  CAS  PubMed  Google Scholar 

  15. Lin M-H, Miner JH, Turk J, Hsu F-F (2017) Linear ion-trap MSn with high-resolution MS reveals structural diversity of 1-O-acylceramide family in mouse epidermis. J Lipid Res 58(4):772–782. https://doi.org/10.1194/jlr.D071647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Masukawa Y, Narita H, Shimizu E, Kondo N, Sugai Y, Oba T, Homma R, Ishikawa J, Takagi Y, Kitahara T, Takema Y, Kita K (2008) Characterization of overall ceramide species in human stratum corneum. J Lipid Res 49(7):1466–1476. https://doi.org/10.1194/jlr.M800014-JLR200

    Article  CAS  PubMed  Google Scholar 

  17. Doering T, Holleran WM, Potratz A, Vielhaber G, Elias PM, Suzuki K, Sandhoff K (1999) Sphingolipid activator proteins are required for epidermal permeability barrier formation. J Biol Chem 274(16):11038–11045

    Article  CAS  Google Scholar 

  18. Hirabayashi T, Anjo T, Kaneko A, Senoo Y, Shibata A, Takama H, Yokoyama K, Nishito Y, Ono T, Taya C, Muramatsu K, Fukami K, Munoz-Garcia A, Brash AR, Ikeda K, Arita M, Akiyama M, Murakami M (2017) PNPLA1 has a crucial role in skin barrier function by directing acylceramide biosynthesis. Nat Commun 8:14609. https://doi.org/10.1038/ncomms14609

    Article  PubMed  PubMed Central  Google Scholar 

  19. Honda Y, Kitamura T, Naganuma T, Abe T, Ohno Y, Sassa T, Kihara A (2018) Decreased skin barrier lipid acylceramide and differentiation-dependent gene expression in ichthyosis gene Nipal4-knockout mice. J Invest Dermatol 138(4):741–749. https://doi.org/10.1016/j.jid.2017.11.008

    Article  CAS  PubMed  Google Scholar 

  20. Lin MH, Hsu FF, Crumrine D, Meyer J, Elias PM, Miner JH (2019) Fatty acid transport protein 4 is required for incorporation of saturated ultralong-chain fatty acids into epidermal ceramides and monoacylglycerols. Sci Rep 9(1):13254. https://doi.org/10.1038/s41598-019-49684-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van Smeden J, Hoppel L, van der Heijden R, Hankemeier T, Vreeken RJ, Bouwstra JA (2011) LC/MS analysis of stratum corneum lipids: ceramide profiling and discovery. J Lipid Res 52(6):1211–1221. https://doi.org/10.1194/jlr.M014456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Macala LJ, Yu RK, Ando S (1983) Analysis of brain lipids by high performance thin-layer chromatography and densitometry. J Lipid Res 24(9):1243–1250

    Article  CAS  Google Scholar 

  23. Bodennec J, Koul O, Aguado I, Brichon G, Zwingelstein G, Portoukalian J (2000) A procedure for fractionation of sphingolipid classes by solid-phase extraction on aminopropyl cartridges. J Lipid Res 41(9):1524–1531

    Article  CAS  Google Scholar 

  24. Lin MH, Miner JH, Turk J, Hsu FF (2017) Linear ion-trap MS(n) with high-resolution MS reveals structural diversity of 1-O-acylceramide family in mouse epidermis. J Lipid Res 58(4):772–782. https://doi.org/10.1194/jlr.D071647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Motta S, Monti M, Sesana S, Caputo R, Carelli S, Ghidoni R (1993) Ceramide composition of the psoriatic scale. Biochim Biophys Acta 1182(2):147–151

    Article  CAS  Google Scholar 

  26. Robson KJ, Stewart ME, Michelsen S, Lazo ND, Downing DT (1994) 6-Hydroxy-4-sphingenine in human epidermal ceramides. J Lipid Res 35(11):2060–2068

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant R01AR049269 to J.H.M., and NIH P30DK020579, P30DK056341, and R24GM136766 grants to Mass Spectrometry Resource of Washington University.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lin, MH., Miner, J.H., Hsu, FF. (2021). Comprehensive Mouse Skin Ceramide Analysis on a Solid-Phase and TLC Separation with High-Resolution Mass Spectrometry Platform. In: Hsu, FF. (eds) Mass Spectrometry-Based Lipidomics. Methods in Molecular Biology, vol 2306. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1410-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1410-5_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1409-9

  • Online ISBN: 978-1-0716-1410-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics