Abstract
Molecular dynamics or MD simulation is gradually maturing into a tool for constructing in vivo models of living cells in atomistic details. The feasibility of such models is bolstered by integrating the simulations with data from microscopic, tomographic and spectroscopic experiments on exascale supercomputers, facilitated by the use of deep learning technologies. Over time, MD simulation has evolved from tens of thousands of atoms to over 100 million atoms comprising an entire cell organelle, a photosynthetic chromatophore vesicle from a purple bacterium. In this chapter, we present a step-by-step outline for preparing, executing and analyzing such large-scale MD simulations of biological systems that are essential to life processes. All scripts are provided via GitHub.
Key words
- Multiscale simulation
- Molecular dynamics
- Photosynthetic chromatophore
- NAMD
- VMD
- Ensemble toolkit
- High-performance computing
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Alberts B (2010) Cell biology: the endless frontier. Mol Biol Cell 21(22):3785
Singharoy A, Maffeo C, Delgado-Magnero K et al (2019) Atoms to phenotypes: molecular design principles of cellular energy metabolism. Cell 179(5):1098–1111.e23
Goh BC, Hadden JA, Bernardi RC et al (2016) Computational methodologies for real-space structural refinement of large macromolecular complexes. Annu Rev Biophys 45:253–278
Voth GA (2017) A multiscale description of biomolecular active matter: the chemistry underlying many life processes. Acc Chem Res 50(3):594–598
Davtyan A, Simunovic M, Voth GA (2016) Multiscale simulations of protein-facilitated membrane remodeling. J Struct Biol 196(1):57–63
Van Meel JA, Arnold A, Frenkel D et al (2008) Harvesting graphics power for md simulations. Mol Simul 34(3):259–266
Ananthraj V, De K, Jha S et al (2018) Towards exascale computing for high energy physics: The atlas experience at ornl. In: 2018 IEEE 14th international conference on e-science (e-science), pp 341–342
Kilburg D, Gallicchio E (2016) Recent advances in computational models for the study of protein–peptide interactions. Adv Protein Chem Struct Biol 105:27–57
Ourmazd A (2019) Cryo-em, xfels and the structure conundrum in structural biology. Nat Methods 16(10):941–944
Marrink SJ, Corradi V, Souza PC et al (2019) Computational modeling of realistic cell membranes. Chem Rev 119(9):6184–6226
Feig M, Harada R, Mori T et al (2015) Complete atomistic model of a bacterial cytoplasm for integrating physics, biochemistry, and systems biology. J Mol Graph Model 58:1–9
Yu I, Mori T, Ando T et al (2016) Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm. elife 5:e19274
Perilla JR, Schulten K (2017) Physical properties of the hiv-1 capsid from all-atom molecular dynamics simulations. Nat Commun 8:15959
Wickles S, Singharoy A, Andreani J et al (2014) A structural model of the active ribosome-bound membrane protein insertase yidc. elife 3:e03035
Trabuco LG, Villa E, Mitra K et al (2008) Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16(5):673–683
Schweitzer A, Aufderheide A, al Rudack T (2016) Structure of the human 26s proteasome at a resolution of 3.9 Å. Proc Natl Acad Sci U S A 113(28):7816–7821
Durrant JD, Bush RM, Amaro RE (2016) Microsecond molecular dynamics simulations of influenza neuraminidase suggest a mechanism for the increased virulence of stalk-deletion mutants. J Phys Chem B 120(33):8590–8599
Mannige RV, Brooks CL III (2010) Periodic table of virus capsids: implications for natural selection and design. PLoS One 5(3):e9423
Blood PD, Voth GA (2006) Direct observation of bin/amphiphysin/rvs (bar) domaininduced membrane curvature by means of molecular dynamics simulations. Proc Natl Acad Sci U S A 103(41):15068–15072
Arkhipov A, Yin Y, Schulten K (2008) Four-scale description of membrane sculpting by bar domains. Biophys J 95(6):2806–2821
Jung J, Nishima W, Daniels M et al (2019) Scaling molecular dynamics beyond 100,000 processor cores for large-scale biophysical simulations. J Comput Chem 40(21):1919–1930
Renaud J-P, Chari A, Ciferri C et al (2018) Cryo-EM in drug discovery: achievements, limitations and prospects. Nat Rev Drug Discov 17(7):471–492
Camargo C (2018) Physics makes rules, evolution rolls the dice. Science 361(6399):236–236
Şener MK, Olsen JD, Hunter CN et al (2007) Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle. Proc Natl Acad Sci 104(40):15723–15728
Blankenship RE (2014) Molecular mechanisms of photosynthesis. John Wiley & Sons, Hoboken, New Jersey
Vant, J. W. (2019). Chromatophore_large_system_simulation. https://github.com/jvant/Chromatophore_Large_System_Simulation GitHub
Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802
Comer J, Aksimentiev A (2016) DNA sequence-dependent ionic currents in ultra-small solidstate nanopores. Nanoscale 8(18):9600–9613
Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14(1):33–38
Singharoy A, Cheluvaraja S, Ortoleva P (2011) Order parameters for macromolecules: application to multiscale simulation. J Chem Phys 134(4):044104
Acun B, Hardy DJ, Kale LV et al (2018) Scalable molecular dynamics with NAMD on the summit system. IBM J Res Dev 62(6):1–9
Chandler DE, Strümpfer J, Sener M et al (2014) Light harvesting by lamellar chromatophores in rhodospirillum photometricum. Biophys J 106(11):2503–2510
Şener M, Strümpfer J, Timney JA et al (2010) Photosynthetic vesicle architecture and constraints on efficient energy and harvesting. Biophys J 99(1):67–75
Cartron ML, Olsen JD, Sener M et al (2014) Integration of energy and electron transfer processes in the photosynthetic membrane of rhodobacter sphaeroides. Biochim Biophys Acta 1837(10):1769–1780
Kumar S, Cartron ML, Mullin N et al (2016) Direct imaging of protein organization in an intact bacterial organelle using high-resolution atomic force microscopy. ACS Nano 11(1):126–133
Scheuring S, Nevo R, Liu L-N et al (2014) The architecture of rhodobacter sphaeroides chromatophores. Biochim Biophys Acta 1837(8):1263–1270
Russel D, Lasker K, Webb B et al (2012) Putting the pieces together: integrative modeling platform software for structure determination of macromolecular assemblies. PLoS Biol 10(1):e1001244
Ho PT, Montiel-Garcia DJ, Wong JJ et al (2018) VIPERdb: a tool for virus research. Annu Rev Virol 5(1):477–488
Durrant JD, Amaro RE (2014) Lipidwrapper: an algorithm for generating large-scale membrane models of arbitrary geometry. PLoS Comput Biol 10(7):e1003720
Wells DB, Abramkina V, Aksimentiev A (2007) Exploring transmembrane transport through α-hemolysin with grid-steered molecular dynamics. J Chem Phys 127(12):09B619
Balasubramanian V, Turilli M, Hu W et al (2018) Harnessing the power of many: extensible toolkit for scalable ensemble applications. In: In 2018 IEEE international parallel and distributed processing symposium (ipdps). IEEE, New York, pp 536–545
Turilli M, Santcroos M, Jha S (2018) A comprehensive perspective on pilot-job systems. ACM Comput Surv 51(2):43:1–43:32
Goodale T, Jha S, Kaiser H et al (2006) SAGA: a simple API for grid applications, high-level application programming on the grid. Comput Methods Sci Technol 12(1):7–20
Merzky A, Weidner O, Jha S (2015) SAGA: a standardized access layer to heterogeneous distributed computing infrastructure. Software-X 1-2:3–8
MDFF Integration with EnTK on OLCF Summit. (2019). https://github.com/radical-collaboration/MDFF-Error.GitHub
Chandler DE, Hsin J, Harrison CB et al (2008) Intrinsic curvature properties of photosynthetic proteins in chromatophores. Biophys J 95(6):2822–2836
Singharoy A, Barragan AM, Thangapandian S et al (2016b) Binding site recognition and docking dynamics of a single electron transport protein: cytochrome c 2. J Am Chem Soc 138(37):12077–12089
Singharoy A, Teo I, McGreevy R et al (2016a) Molecular dynamics-based model refinement and validation for sub-5 angstrom cryo-electron microscopy maps. eLife 5:e16105
Acknowledgments
The authors acknowledge start-up funds from the School of Molecular Sciences and Center for Applied Structure Discovery at Arizona State University, and the resources of the OLCF at the Oak Ridge National Laboratory, which is supported by the Office of Science at DOE under Contract No. DEAC05-00OR22725, made available via the INCITE program. We also acknowledge NAMD and VMD developments supported by NIH (P41GM104601) and R01GM098243-02 for supporting our study of membrane proteins.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Wilson, E. et al. (2021). Large-Scale Molecular Dynamics Simulations of Cellular Compartments. In: Schmidt-Krey, I., Gumbart, J.C. (eds) Structure and Function of Membrane Proteins. Methods in Molecular Biology, vol 2302. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1394-8_18
Download citation
DOI: https://doi.org/10.1007/978-1-0716-1394-8_18
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-1393-1
Online ISBN: 978-1-0716-1394-8
eBook Packages: Springer Protocols