Skip to main content

Molecular Dynamics–Based Thermodynamic and Kinetic Characterization of Membrane Protein Conformational Transitions

  • Protocol
  • First Online:
Structure and Function of Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2302))

Abstract

Molecular dynamics (MD) simulations are routinely used to study structural dynamics of membrane proteins. However, conventional MD is often unable to sample functionally important conformational transitions of membrane proteins such as those involved in active membrane transport or channel activation process. Here we describe a combination of multiple MD based techniques that allows for a rigorous characterization of energetics and kinetics of large-scale conformational changes in membrane proteins. The methodology is based on biased, nonequilibrium, collective-variable based simulations including nonequilibrium pulling, string method with swarms of trajectories, bias-exchange umbrella sampling, and rate estimation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hansson T, Oostenbrink C, van Gunsteren WF (2002) Molecular dynamics simulations. Curr Opin Struct Biol 12:190–196

    Article  CAS  PubMed  Google Scholar 

  2. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 265:654–652

    Google Scholar 

  3. Karplus M, Kuriyan J (2005) Molecular dynamics and protein function. Proc Natl Acad Sci U S A 102:6679–6685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Maragliano L, Fischer A, Vanden-Eijnden E et al (2006) String method in collective variables: minimum free energy paths and isocommittor surfaces. J Chem Phys 125:24106

    Article  PubMed  CAS  Google Scholar 

  5. E W, Vanden-Eijnden E (2010) Transition-path theory and path-finding algorithms for the study of rare events. Annu Rev Phys Chem 61:391

    Article  CAS  PubMed  Google Scholar 

  6. Johnson ME, Hummer G (2012) Characterization of a dynamic string method for the construction of transition pathways in molecular reactions. J Phys Chem B 116:8573–8583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comp Phys 23:187–199

    Article  Google Scholar 

  8. Northrup SH, Pear MR, Lee CY et al (1982) Dynamical theory of activated processes in globular proteins. Proc Natl Acad Sci U S A 79:4035–4039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schlitter J, Engels M, Krüger P et al (1993) Targeted molecular dynamics simulation of conformational change—application to the T-R transition in insulin. Mol Simulation 10:291–308

    Article  CAS  Google Scholar 

  10. Huber T, Torda AE, van Gunsteren WF (1994) Local elevation: a method for improving the searching properties of molecular dynamics simulation. J Comput Aided Mol Des 8:695

    Article  CAS  PubMed  Google Scholar 

  11. Izrailev S, Stepaniants S, Balsera M et al (1997) Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys J 72:1568–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151

    Article  CAS  Google Scholar 

  13. Laio A, Parrinello M (2002) Escaping free energy minima. Proc Natl Acad Sci U S A 99:12562–12566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Darve E, Rodríguez-Gómez D, Pohorille A (2008) Adaptive biasing force method for scalar and vector free energy calculations. J Chem Phys 128:144120

    Article  PubMed  CAS  Google Scholar 

  15. Abrams CF, Vanden-Eijnden E (2010) Large-scale conformational sampling of proteins using temperature-accelerated molecular dynamics. Proc Natl Acad Sci U S A 107:4961–4966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Templeton C, Chen SH, Fathizadeh A et al (2017) Rock climbing: a local-global algorithm to compute minimum energy and minimum free energy pathways. J Chem Phys 147:152718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Chong LT, Saglam AS, Zuckerman DM (2017) Path-sampling strategies for simulating rare events in biomolecular systems. Curr Opin Struct Biol 43:88–94

    Article  CAS  PubMed  Google Scholar 

  18. Laio A, Panagiotopoulos AZ, Zuckerman DM (2018) Preface: special topic on enhanced sampling for molecular systems. J Chem Phys 149:072001

    Article  PubMed  CAS  Google Scholar 

  19. Pan AC, Sezer D, Roux B (2008) Finding transition pathways using the string method with swarms of trajectories. J Phys Chem B 112:3432–3440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moradi M, Enkavi G, Tajkhorshid E (2015) Atomic-level characterization of transport cycle thermodynamics in the glycerol-3-phosphate:phosphate antiporter. Nat Commun 6:8393

    Article  CAS  PubMed  Google Scholar 

  21. Hummer G, Kevrekidis IG (2003) Coarse molecular dynamics of a peptide fragment: free energy, kinetics, and long-time dynamics computations. J Chem Phys 118:10762

    Article  CAS  Google Scholar 

  22. Moradi M, Tajkhorshid E (2013) Driven metadynamics: reconstructing equilibrium free energies from driven adaptive-bias simulations. J Phys Chem Lett 4:1882–1887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moradi M, Tajkhorshid E (2014) Computational recipe for efficient description of large-scale conformational changes in biomolecular systems. J Chem Theory Comp 10:2866–2880

    Article  CAS  Google Scholar 

  24. Bonomi M, Branduardi D, Bussi G et al (2009) PLUMED: a portable plugin for free energy calculations with molecular dynamics. Comput Phys Commun 180:1961

    Article  CAS  Google Scholar 

  25. Babin V, Karpusenka V, Moradi M et al (2009) Adaptively biased molecular dynamics: an umbrella sampling method with a time-dependent potential. Int J Quantum Chem 109:3666–3678

    Article  CAS  Google Scholar 

  26. Fiorin G, Klein ML, Hénin J (2013) Using collective variables to drive molecular dynamics simulations. Mol Phys 111:3345

    Article  CAS  Google Scholar 

  27. Sidky H, Colón YJ, Helfferich J et al (2018) Ssages: software suite for advanced general ensemble simulations. J Chem Phys 148:044104

    Article  PubMed  CAS  Google Scholar 

  28. Branduardi D, Gervasio FL, Parrinello M (2007) From a to b in free energy space. J Chem Phys 126:054103

    Article  PubMed  CAS  Google Scholar 

  29. Berteotti A, Cavalli A, Branduardi D et al (2009) Protein conformational transitions: the closure mechanism of a kinase explored by atomistic simulations. J Am Chem Soc 131:244–250

    Article  CAS  PubMed  Google Scholar 

  30. Moradi M, Tajkhorshid E (2013) Mechanistic picture for conformational transition of a membrane transporter at atomic resolution. Proc Natl Acad Sci U S A 110:18916–18921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Legoll F, Leliévre T (2010) Effective dynamics using conditional expectations. Nonlinearity 23:2131

    Article  Google Scholar 

  32. Czerminski R, Elber R (1989) Reaction path study of conformational transitions and helix formation in a tetrapeptide. Proc Natl Acad Sci U S A 86:6963–6967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mills G, Jónsson H (1994) Quantum and thermal effects in dissociative adsorption: evaluation of free energy barriers in multidimensional quantum systems. Phys Rev Lett 72:1124–1127X

    Article  CAS  PubMed  Google Scholar 

  34. Fakharzadeh A, Moradi M (2016) Effective Riemannian diffusion model for conformational dynamics of biomolecular systems. J Phys Chem Lett 7:4980–4987

    Article  CAS  PubMed  Google Scholar 

  35. Jarzynski C (1997) Nonequilibrium equality for free energy differences. Phys Rev Lett 78:2690–2693

    Article  CAS  Google Scholar 

  36. Crooks GE (2000) Path-ensemble averages in systems driven far from equilibrium. Phys Rev E 61:2361–2366

    Article  CAS  Google Scholar 

  37. Hummer G, Szabo A (2001) Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proc Natl Acad Sci U S A 98:3658–3661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lifson S, Jackson JL (1962) On the self-diffusion of ions in a polyelectrolyte solution. J Chem Phys 36:2410–2414

    Article  CAS  Google Scholar 

  39. Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys 23:187

    Article  Google Scholar 

  40. Kumar S, Bouzida D, Swendsen RH et al (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. I. the method. J Comp Chem 13:1011–1021

    Article  CAS  Google Scholar 

  41. Bartels C (2000) Analyzing biased Monte Carlo and molecular dynamics simulations. Chem Phys Lett 331:446

    Article  CAS  Google Scholar 

  42. Shirts MR, Chodera JD (2008) Statistically optimal analysis of samples from multiple equilibrium states. J Chem Phys 129:124105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Hummer G (2005) Position-dependent diffusion coefficients and free energies from bayesian analysis of equilibrium and replica molecular dynamics simulations. New J Phys 7:34

    Article  CAS  Google Scholar 

  44. Singharoy A, Chipot C, Moradi M et al (2017) Chemomechanical coupling in hexameric protein-protein interfaces harness energy within V-type ATPases. J Am Chem Soc 139:293–310

    Article  CAS  PubMed  Google Scholar 

  45. Smart OS, Neduvelil JG, Wang X et al (1996) HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J Mol Graph 14:354–360

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under grant numbers 1940188 and 1945465. This research is also supported by the Arkansas Biosciences Institute. This work used the Extreme Science and Engineering Discovery Environment (allocation MCB150129), which is supported by National Science Foundation grant number ACI-1548562. This research is also supported by the Arkansas High Performance Computing Center which is funded through multiple National Science Foundation grants and the Arkansas Economic Development Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Moradi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ogden, D., Moradi, M. (2021). Molecular Dynamics–Based Thermodynamic and Kinetic Characterization of Membrane Protein Conformational Transitions. In: Schmidt-Krey, I., Gumbart, J.C. (eds) Structure and Function of Membrane Proteins. Methods in Molecular Biology, vol 2302. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1394-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1394-8_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1393-1

  • Online ISBN: 978-1-0716-1394-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics