Skip to main content

Continuous Constant pH Molecular Dynamics Simulations of Transmembrane Proteins

  • Protocol
  • First Online:
Structure and Function of Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2302))

Abstract

Many membrane channels, transporters, and receptors utilize a pH gradient or proton coupling to drive functionally relevant conformational transitions. Conventional molecular dynamics simulations employ fixed protonation states, thus neglecting the coupling between protonation and conformational equilibria. Here we describe the membrane-enabled hybrid-solvent continuous constant pH molecular dynamics method for capturing atomic details of proton-coupled conformational dynamics of transmembrane proteins. Example protocols from our recent application studies of proton channels and ion/substrate transporters are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mager T, Rimon A, Padan E et al (2011) Transport mechanism and pH regulation of the Na+/H+ antiporter NhaA from Escherichia coli. J Biol Chem 286:23570–23581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Padan E (2014) Functional and structural dynamics of NhaA, a prototype for Na+ and H+ antiporters, which are responsible for Na+ and H+ homeostasis in cells. Biochim Biophys Acta 1837:1047–1062

    Article  CAS  PubMed  Google Scholar 

  3. Ramsey IS, Moran MM, Chong JA et al (2006) A voltage-gated proton-selective channel lacking the pore domain. Nature 440:1213–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. DeCoursey TE, Hosler J (2014) Philosophy of voltage-gated proton channels. J R Soc Interface 11:20130799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. DeCoursey TE (2018) Voltage and pH sensing by the voltage-gated proton channel, Hv1. J R Soc Interface 15:20180108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ludwig MG, Vanek M, Guerini D et al (2003) Proton-sensing G-protein-coupled receptors. Nature 425:93–98

    Article  CAS  PubMed  Google Scholar 

  7. Drew D, Boudker O (2016) Shared molecular mechanisms of membrane transporters. Annu Rev Biochem 85:543–572

    Article  CAS  PubMed  Google Scholar 

  8. Lee C, Kang HJ, von Ballmoons C et al (2013) A two-domain elevator mechanism for sodium/proton antiport. Nature 501:573–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Coincon M, Uzdavinys P, Nji E et al (2016) Crystal structures reveal the molecular basis of ion translocation in sodium/proton antiporters. Nat Struct Mol Biol 23:248–255

    Article  CAS  PubMed  Google Scholar 

  10. Hunte C, Screpanti E, Venturi M et al (2005) Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435:1197–1202

    Article  CAS  PubMed  Google Scholar 

  11. Lee C, Yashiro S, Dotson DL et al (2014) Crystal structure of the sodium-proton antiporter NhaA dimer and new mechanistic insights. J Gen Physiol 144:529–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Takeshita K, Sakata S, Yamashita E et al (2014) X-ray crystal structure of voltage-gated proton channel. Nat Struct Mol Biol 21:352–357

    Article  CAS  PubMed  Google Scholar 

  13. Taglicht D, Padan E, Schuldiner S (1991) Overproduction and purification of a functional Na+/H+ antiporter coded by nhaA (ant) from Escherichia coli. J Biol Chem 266:11289–11294

    Article  CAS  PubMed  Google Scholar 

  14. Padan E, Danieli T, Keren Y et al (2015) NhaA antiporter functions using 10 helices, and an additional 2 contribute to assembly/stability. Proc Natl Acad Sci U S A 112:E5575–E5582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen J, Brooks CL III, Khandogin J (2008) Recent advances in implicit solvent-based methods for biomolecular simulations. Curr Opin Struct Biol 18:140–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wallace JA, Shen JK (2009) Predicting pKa values with continuous constant pH molecular dynamics. Methods Enzymol 466:455–475

    Article  CAS  PubMed  Google Scholar 

  17. Chen W, Morrow BH, Shi C et al (2014) Recent development and application of constant pH molecular dynamics. Mol Simul 40:830–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wallace JA, Wang Y, Shi C et al (2011) Toward accurate prediction of pKa values for internal protein residues: the importance of conformational relaxation and desolvation energy. Proteins 79:3364–3373

    Article  CAS  PubMed  Google Scholar 

  19. Alexov E, Mehler EL, Baker N et al (2011) Progress in the prediction of pKa values in proteins. Proteins 79:3260–3275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baptista AM, Teixeira VH, Soares CM (2002) Constant-pH molecular dynamics using stochastic titration. J Chem Phys 117:4184–4200

    Article  CAS  Google Scholar 

  21. Mongan J, Case DA, McCammon JA (2004) Constant pH molecular dynamics in generalized born implicit solvent. J Comput Chem 25:2038–2048

    Article  CAS  PubMed  Google Scholar 

  22. Kong X, Brooks CL III (1996) λ-Dynamics: a new approach to free energy calculations. J Chem Phys 105:2414–2423

    Article  Google Scholar 

  23. Lee MS, Salsbury FR Jr, Brooks CL III (2004) Constant-pH molecular dynamics using continuous titration coordinates. Proteins 56:738–752

    Article  CAS  PubMed  Google Scholar 

  24. Khandogin J, Brooks CL III (2005) Constant pH molecular dynamics with proton tautomerism. Biophys J 89:141–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wallace JA, Shen JK (2011) Continuous constant pH molecular dynamics in explicit solvent with pH-based replica exchange. J Chem Theory Comput 7:2617–2629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Donnini S, Tegeler F, Groenhof G et al (2011) Constant pH molecular dynamics in explicit solvent with λ-dynamics. J Chem Theory Comput 7:1962–1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wallace JA, Shen JK (2012a) Charge-leveling and proper treatment of long-range electrostatics in all-atom molecular dynamics at constant pH. J Chem Phys 137:184105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Chen W, Wallace J, Yue Z et al (2013) Introducing titratable water to all-atom molecular dynamics at constant pH. Biophys J 105:L15–L17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang Y, Chen W, Wallace JA et al (2016b) All-atom continuous constant pH molecular dynamics with particle mesh ewald and titratable water. J Chem Theory Comput 12:5411–5421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Arthur EJ, Brooks IIICL (2016) Efficient implementation of constant pH molecular dynamics on modern graphics processors. J Comput Chem 37:2171–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang Y, Harris RC, Shen J (2018) Generalized born based continuous constant pH molecular dynamics in amber: implementation, benchmarking and analysis. J Chem Inf Model 58:1372–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Goh GB, Knight JL, Brooks CL III (2012) Constant pH molecular dynamics simulations of nucleic acids in explicit solvent. J Chem Theory Comput 8:36–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Goh GB, Hulbert BS, Zhou H et al (2014) Constant pH molecular dynamics of proteins in explicit solvent with proton tautomerism. Proteins 82:1319–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brooks BR, Brooks IIICL, Mackerell AD Jr et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Case DA, Ben-Shalom IY, Brozell SR et al (2018) AMBER 2018. University of California, San Francisco, CA

    Google Scholar 

  36. Pronk S, Páll S, Schulz R et al (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Harris RC, Shen J (2019) GPU-accelerated implementation of continuous constant ph molecular dynamics in amber: predictions with single-pH simulations. J Chem Inf Model 59:4821–4832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wallace JA, Shen JK (2012b) Unraveling a trap-and-trigger mechanism in the pH-sensitive self-assembly of spider silk proteins. J Phys Chem Lett 3:658–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ellis CR, Shen J (2015) pH-dependent population shift regulates BACE1 activity and inhibition. J Am Chem Soc 137:9543–9546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen W, Huang Y, Shen J (2016) Conformational activation of a transmembrane proton channel from constant pH molecular dynamics. J Phys Chem Lett 7:3961–3966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang Y, Chen W, Dotson DL et al (2016a) Mechanism of pH-dependent activation of the sodium-proton antiporter NhaA. Nat Commun 7:12940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yue Z, Chen W, Zgurskaya HI et al (2017) Constant pH molecular dynamics reveals how proton release drives the conformational transition of a transmembrane efflux pump. J Chem Theory Comput 13:6405–6414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ellis CR, Tsai CC, Hou X et al (2016) Constant pH molecular dynamics reveals pH-modulated binding of two small-molecule BACE1 inhibitors. J Phys Chem Lett 7:944–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Harris RC, Tsai CC, Ellis CR et al (2017) Proton-coupled conformational allostery modulates the inhibitor selectivity for β-secretase. J Phys Chem Lett 8:4832–4837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Henderson JA, Harris RC, Tsai CC et al (2018) How ligand protonation state controls water in protein-ligand binding. J Phys Chem Lett 9:5440–5444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tsai CC, Yue Z, Shen J (2019) How electrostatic coupling enables conformational plasticity in a tyrosine kinase. J Am Chem Soc 141:15092–15101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Im W, Feig M, Brooks CL III (2003a) An implicit membrane generalized Born theory for the study of structure, stability, and interactions of membrane proteins. Biophys J 85:2900–2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Acharya R, Carnevale V, Fiorin G et al (2010) Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus. Proc Natl Acad Sci U S A 107:15075–15080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Eicher T, Cha HJ, Seeger MA et al (2012) Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Proc Natl Acad Sci U S A 109:5687–5692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lemkul JA, Huang J, Roux B et al (2016) An empirical polarizable force field based on the classical drude oscillator model: development history and recent applications. Chem Rev 116:4983–5013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lomize MA, Lomize AL, Pogozheva ID et al (2006) OPM: orientations of proteins in membranes database. Bioinformatics 22:623–625

    Article  CAS  PubMed  Google Scholar 

  52. Feig M, Karanicolas J, Brooks CL III (2004) MMTSB tool set: enhanced sampling and multiscale modeling methods for applications in structural biology. J Mol Graph Model 22:377–395

    Article  CAS  PubMed  Google Scholar 

  53. Waterhouse A, Bertoni M, Bienert S et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:296–303

    Article  CAS  Google Scholar 

  54. Brünger AT, Karplus M (1988) Polar hydrogen positions in proteins: empirical energy placement and neutron diffraction comparison. Proteins 4:148–156

    Article  PubMed  Google Scholar 

  55. Nozaki Y, Tanford C (1967) Examination of titration behavior. Methods Enzymol 11:715–734

    Article  CAS  Google Scholar 

  56. Im W, Lee MS, Brooks CL III (2003b) Generalized Born model with a simple smoothing function. J Comput Chem 24:1691–1702

    Article  CAS  PubMed  Google Scholar 

  57. Jo S, Kim T, Im W (2007) Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS One 2:e880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Abraham MJ, Murtola T, Schulz R et al (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2:19–25

    Article  Google Scholar 

  59. Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Eastman P, Swails J, Chodera JD et al (2017) OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput Biol 13:e1005659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Klauda JB, Venable RM, Freites JA et al (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mori T, Ogushi F, Sugita Y (2012) Analysis of lipid surface area in protein-membrane systems combining voronoi tessellation and monte carlo integration methods. J Comput Chem 33:286–293

    Article  CAS  PubMed  Google Scholar 

  63. Vermeer LS, de Groot BL, Réat V et al (2007) Acyl chain order parameter profiles in phospholipid bilayers: computation from molecular dynamics simulations and comparison with 2H NMR experiments. Eur Biophys J 36:919–931

    Article  CAS  PubMed  Google Scholar 

  64. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  65. MacKerell AD Jr, Bashford D, Bellott M et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  PubMed  Google Scholar 

  66. MacKerell AD Jr, Feig M, Brooks CL III (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25:1400–1415

    Article  CAS  PubMed  Google Scholar 

  67. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  68. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  69. Hess B, Bekker H, Berendsen HJC et al (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  70. Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268

    Article  Google Scholar 

  71. Hoover WG (1985) Canonical dynamics: equilibration phase-space distributions. Phys Rev A 31:1695–1697

    Article  CAS  Google Scholar 

  72. Feller SE, Zhang Y, Pastor RW et al (1995) Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 103:4613–4621

    Article  CAS  Google Scholar 

  73. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  74. Nina M, Beglov D, Roux B (1997) Atomic radii for continuum electrostatics calculations based on molecular dynamics free energy simulations. J Phys Chem B 101:5239–5248

    Article  CAS  Google Scholar 

  75. Chen J, Im W, Brooks CL III (2006) Balancing solvation and intramolecular interactions: toward a consistent generalized born force field. J Am Chem Soc 128:3728–3736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Knight JL, Brooks CL III (2011) Surveying implicit solvent models for estimating small molecule absolute hydration free energies. J Comput Chem 32:2909–2923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ullmann GM (2003) Relations between protonation constants and titration curves in polyprotic acids: a critical view. J Phys Chem B 107:1263–1271

    Article  CAS  Google Scholar 

  78. Webb H, Tynan-Connolly BM, Lee GM et al (2011) Remeasuring HEWL pKa values by NMR spectroscopy: methods, analysis, accuracy, and implications for theoretical pKa calculations. Proteins 79:685–702

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the National Institutes of Health (R01GM098818 and R01GM118772) for funding. Yandong Huang and Jack A. Henderson contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Huang, Y., Henderson, J.A., Shen, J. (2021). Continuous Constant pH Molecular Dynamics Simulations of Transmembrane Proteins. In: Schmidt-Krey, I., Gumbart, J.C. (eds) Structure and Function of Membrane Proteins. Methods in Molecular Biology, vol 2302. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1394-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1394-8_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1393-1

  • Online ISBN: 978-1-0716-1394-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics