Skip to main content

Helical Membrane Protein Crystallization in the New Era of Electron Cryo-Microscopy

  • Protocol
  • First Online:
Structure and Function of Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2302))

Abstract

Helical assemblies of proteins, which consist of a two-dimensional lattice of identical subunits arranged with helical symmetry, are a common structural motif in nature. For membrane proteins, crystallization protocols can induce helical arrangements and take advantage of the symmetry found in these assemblies for the structural determination of target proteins. Modern advances in the field of electron cryo-microscopy (cryo-EM), in particular the advent of direct electron detectors, have opened the potential for structure determination of membrane proteins in such assemblies at high resolution. The nature of the symmetry in helical crystals of membrane proteins means that a single image potentially contains enough information for three-dimensional structural determination. With the current direct electron detectors, we have never been closer to making this a reality. Here, we present a protocol detailing the preparation of helical crystals, with an emphasis on further cryo-EM analysis and structural determination of the sarco(endo)plasmic reticulum Ca2+-ATPase in the presence of regulatory subunits such as phospholamban.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henderson R, Unwin PN (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257(5521):28–32. https://doi.org/10.1038/257028a0

    Article  CAS  PubMed  Google Scholar 

  2. Henderson R, Unwin PN (1977) Structure of the purple membrane from Halobacterium halobium. Biophys Struct Mech 3(2):121. https://doi.org/10.1007/bf00535804

    Article  CAS  PubMed  Google Scholar 

  3. Dubochet J, Adrian M, Chang JJ, Homo JC, Lepault J, McDowall AW, Schultz P (1988) Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21:129–228

    Article  CAS  Google Scholar 

  4. Lepault J, Booy FP, Dubochet J (1983) Electron microscopy of frozen biological specimens. J Microsc 129:89–102

    Article  CAS  Google Scholar 

  5. Tani K, Fujiyoshi Y (2014) Water channel structures analysed by electron crystallography. Biochim Biophys Acta 1840(5):1605–1613. https://doi.org/10.1016/j.bbagen.2013.10.007

    Article  CAS  PubMed  Google Scholar 

  6. Gonen T, Cheng Y, Sliz P, Hiroaki Y, Fujiyoshi Y, Harrison SC, Walz T (2005) Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 438(7068):633–638. https://doi.org/10.1038/nature04321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Abe K, Shimokawa J, Naito M, Munson K, Vagin O, Sachs G et al (2017) The cryo-EM structure of gastric H(+),K(+)-ATPase with bound BYK99, a high-affinity member of K(+)-competitive, imidazo[1,2-a]pyridine inhibitors. Sci Rep 7(1):6632. https://doi.org/10.1038/s41598-017-06698-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Righetto RD, Biyani N, Kowal J, Chami M, Stahlberg H (2019) Retrieving high-resolution information from disordered 2D crystals by single-particle cryo-EM. Nat Commun 10(1):1722. https://doi.org/10.1038/s41467-019-09661-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brisson A, Unwin PNT (1984) Tubular crystals of acetylcholine receptor. J Cell Biol 99:1202–1211

    Article  CAS  Google Scholar 

  10. Toyoshima C, Unwin N (1990) Three-dimensional structure of the acetylcholine receptor by cryoelectron microscopy and helical image reconstruction. J Cell Biol 111:2623–2635

    Article  CAS  Google Scholar 

  11. Toyoshima C, Sasabe H, Stokes DL (1993) Three-dimensional cryo-electron microscopy of the calcium ion pump in the sarcoplasmic reticulum membrane. Nature 362:469–471

    Article  Google Scholar 

  12. Zhang P, Toyoshima C, Yonekura K, Green N, Stokes D (1998) Structure of the calcium pump from sarcoplasmic reticulum at 8 Angstroms resolution. Nature 392:835–839

    Article  CAS  Google Scholar 

  13. Galkin VE, Orlova A, Vos MR, Schroder GF, Egelman EH (2015) Near-atomic resolution for one state of F-actin. Structure 23(1):173–182. https://doi.org/10.1016/j.str.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  14. Fitzpatrick AWP, Falcon B, He S, Murzin AG, Murshudov G, Garringer HJ et al (2017) Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547(7662):185–190. https://doi.org/10.1038/nature23002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang F, Burrage AM, Postel S, Clark RE, Orlova A, Sundberg EJ et al (2017) A structural model of flagellar filament switching across multiple bacterial species. Nat Commun 8(1):960. https://doi.org/10.1038/s41467-017-01075-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kollmer M, Close W, Funk L, Rasmussen J, Bsoul A, Schierhorn A et al (2019) Cryo-EM structure and polymorphism of Abeta amyloid fibrils purified from Alzheimer's brain tissue. Nat Commun 10(1):4760. https://doi.org/10.1038/s41467-019-12683-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fromm SA, Bharat TA, Jakobi AJ, Hagen WJ, Sachse C (2015) Seeing tobacco mosaic virus through direct electron detectors. J Struct Biol 189(2):87–97. https://doi.org/10.1016/j.jsb.2014.12.002

    Article  PubMed  PubMed Central  Google Scholar 

  18. He S, Scheres SHW (2017) Helical reconstruction in RELION. J Struct Biol 198(3):163–176. https://doi.org/10.1016/j.jsb.2017.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Egelman E (2000) A robust algorithm for the reconstruction of helical filaments using single-particle methods. Ultramicroscopy 85:225–234

    Article  CAS  Google Scholar 

  20. Young HS, Rigaud JL, Lacapere JJ, Reddy LG, Stokes DL (1997) How to make tubular crystals by reconstitution of detergent-solubilized Ca2(+)-ATPase. Biophys J 72(6):2545–2558. https://doi.org/10.1016/S0006-3495(97)78898-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stokes DL, Pomfret AJ, Rice WJ, Glaves JP, Young HS (2006) Interactions between Ca2+-ATPase and the pentameric form of phospholamban in two-dimensional co-crystals. Biophys J 90(11):4213–4223. https://doi.org/10.1529/biophysj.105.079640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Coudray N, Lasala R, Zhang Z, Clark KM, Dumont ME, Stokes DL (2016) Deducing the symmetry of helical assemblies: applications to membrane proteins. J Struct Biol 195(2):167–178. https://doi.org/10.1016/j.jsb.2016.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Coudray N, Lasala R, Zhang Z, Clark KM, Dumont ME et al (2017) Structure of the SLC4 transporter Bor1p in an inward-facing conformation. Protein Sci 26(1):130–145. https://doi.org/10.1002/pro.3061

    Article  CAS  PubMed  Google Scholar 

  24. Beroukhim R, Unwin N (1997) Distortion correction of tubular crystals: Improvements in the acetylcholine receptor structure. Ultramicroscopy 70:57–81

    Article  CAS  Google Scholar 

  25. Avery AW, Fealey ME, Wang F, Orlova A, Thompson AR, Thomas DD et al (2017) Structural basis for high-affinity actin binding revealed by a beta-III-spectrin SCA5 missense mutation. Nat Commun 8(1):1350. https://doi.org/10.1038/s41467-017-01367-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stokes DL, Green NM (1990) Three-dimensional crystals of CaATPase from sarcoplasmic reticulum. Symmetry and molecular packing. Biophys J 57:1–14.

    Google Scholar 

  27. Douglas JL, Trieber CA, Afara M, Young HS (2005) Rapid, high-yield expression and purification of Ca2+-ATPase regulatory proteins for high-resolution structural studies. Protein Expr Purif 40(1):118–125. https://doi.org/10.1016/j.pep.2004.11.015

  28. Booth, DS, Avila-Sakar, A, & Cheng, Y (2011) Visualizing proteins and macromolecular complexes by negative stain EM: from grid preparation to image acquisition. JoVE (58):3227

    Google Scholar 

  29. Grassucci, RA, Taylor, DJ, & Frank, J (2007) Preparation of macromolecular complexes for cryo-electron microscopy. Nature protocols 2(12): 3239–3246

    Google Scholar 

  30. Nicholson WV, White H, Trinick J (2010) An approach to automated acquisition of cryoEM images from lacey carbon grids. J Struct Biol 172(3):395–399. https://doi.org/10.1016/j.jsb.2010.08.014

  31. Shi J, Williams DR, Stewart PL (2008) A Script-Assisted Microscopy (SAM) package to improve data acquisition rates on FEI Tecnai electron microscopes equipped with Gatan CCD cameras. J Struct Biol 164(1):166–169. https://doi.org/10.1016/j.jsb.2008.05.011

  32. Yonekura K, Toyoshima C (2000) Structure determination of tubular crystals of membrane proteins. II. Averaging of tubular crystals of different helical classes. Ultramicroscopy 84:15–28

    Google Scholar 

  33. Fernandez-Leiro, R, & Scheres, SHW (2017) A pipeline approach to single-particle processing in RELION. Acta Crystallogr D Struct Biol 73(Pt 6):496–502. https://doi.org/10.1107/S2059798316019276

  34. Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA (2017) cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 14(3):290–296. https://doi.org/10.1038/nmeth.4169

  35. Fromm SA, Sachse C (2016) Cryo-EM structure determination using segmented helical image reconstruction. Methods Enzymol 579:307–328. https://doi.org/10.1016/bs.mie.2016.05.034

  36. Huber ST, Kuhm T, Sachse C (2018) Automated tracing of helical assemblies from electron cryo-micrographs. J Struct Biol 202(1):1–12. https://doi.org/10.1016/j.jsb.2017.11.013

  37. Pothula KR, Smyrnova D, Schroder GF (2019) Clustering cryo-EM images of helical protein polymers for helical reconstructions. Ultramicroscopy 203:132–138. https://doi.org/10.1016/j.ultramic.2018.12.009

  38. Glaves JP, Primeau JO, Espinoza-Fonseca LM, Lemieux MJ, Young HS (2019) The phospholamban pentamer alters function of the sarcoplasmic reticulum calcium pump SERCA. Biophys J 116(4):633–647. https://doi.org/10.1016/j.bpj.2019.01.013

  39. Young HS, Jones LR, Stokes DL (2001) Locating phospholamban in co-crystals with Ca2+-ATPase by cryoelectron microscopy. Biophys J 81(2):884–894. https://doi.org/10.1016/S0006-3495(01)75748-7

  40. Anderson DM, Makarewich CA, Anderson KM, Shelton JM, Bezprozvannaya S, Bassel-Duby R, Olson EN (2016) Widespread control of calcium signaling by a family of SERCA-inhibiting micropeptides. Sci Signal 9(457):ra119. https://doi.org/10.1126/scisignal.aaj1460

  41. Primeau JO, Armanious GP, Fisher ME, Young HS (2017) The sarcoendoplasmic reticulum calcium ATPase. Subcell Biochem. https://doi.org/10.3389/fmicb.2019.00209

  42. Dyla M, Kjaergaard M, Poulsen H, Nissen P (2019) Structure and mechanism of P-type ATPase ion pumps. Annu Rev Biochem. https://doi.org/10.1146/annurev-biochem-010611-112801

  43. Glaves JP, Fisher L, Ward A, Young HS (2010) Helical crystallization of two example membrane proteins MsbA and the Ca(2+)-ATPase. Methods Enzymol 483:143–159. https://doi.org/10.1016/S0076-6879(10)83007-1

  44. Russo CJ, Henderson R (2018) Charge accumulation in electron cryomicroscopy. Ultramicroscopy 187:43–49. https://doi.org/10.1016/j.ultramic.2018.01.009

Download references

Acknowledgments

Mary D. Hernando and Joseph O. Primeau contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard S. Young .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hernando, M.D., Primeau, J.O., Young, H.S. (2021). Helical Membrane Protein Crystallization in the New Era of Electron Cryo-Microscopy. In: Schmidt-Krey, I., Gumbart, J.C. (eds) Structure and Function of Membrane Proteins. Methods in Molecular Biology, vol 2302. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1394-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1394-8_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1393-1

  • Online ISBN: 978-1-0716-1394-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics