Skip to main content

Expression and Purification of Human Mitochondrial Intramembrane Protease PARL

  • Protocol
  • First Online:
Structure and Function of Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2302))

Abstract

Rhomboid proteases are a ubiquitous superfamily of serine intramembrane peptidases that play a role in a wide variety of cellular processes. The mammalian mitochondrial rhomboid protease, Presenilin-Associated Rhomboid Like (PARL), is a critical regulator of mitochondrial homeostasis through the cleavage of its substrates, which have roles in mitochondrial quality control and apoptosis. However, neither structural nor functional information for this important protease is available, because the expression of eukaryotic membrane proteins to sufficient levels in an active form often represents a major bottleneck for in vitro studies. Here we present an optimized protocol for expression and purification of the human PARL protease using the eukaryotic expression host Pichia pastoris. The PARL gene construct was generated in tandem with green fluorescent protein (GFP), which allowed for the selection of high expressing clones and monitoring during the large-scale expression and purification steps. We discuss the production protocol with precise details for each step. The protocol yields 1 mg of pure PARL per liter of yeast culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Freeman M (2016) Rhomboids, signalling and cell biology. Biochem Soc Trans 44(3):945–950. https://doi.org/10.1042/BST20160035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ (2010) Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 191(5):933–942. https://doi.org/10.1083/jcb.201008084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sekine S, Kanamaru Y, Koike M, Nishihara A, Okada M, Kinoshita H, Kamiyama M, Maruyama J, Uchiyama Y, Ishihara N, Takeda K, Ichijo H (2012) Rhomboid protease PARL mediates the mitochondrial membrane potential loss-induced cleavage of PGAM5. J Biol Chem 287(41):34635–34645. https://doi.org/10.1074/jbc.M112.357509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dusterhoft S, Kunzel U, Freeman M (2017) Rhomboid proteases in human disease: mechanisms and future prospects. Biochim Biophys Acta 1864(11 Pt B):2200–2209. https://doi.org/10.1016/j.bbamcr.2017.04.016

    Article  CAS  Google Scholar 

  5. Chen G, Han Z, Feng D, Chen Y, Chen L, Wu H, Huang L, Zhou C, Cai X, Fu C, Duan L, Wang X, Liu L, Liu X, Shen Y, Zhu Y, Chen Q (2014) A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol Cell 54(3):362–377. https://doi.org/10.1016/j.molcel.2014.02.034

    Article  CAS  PubMed  Google Scholar 

  6. Yamano K, Youle RJ (2013) PINK1 is degraded through the N-end rule pathway. Autophagy 9(11):1758–1769. https://doi.org/10.4161/auto.24633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saita S, Nolte H, Fiedler KU, Kashkar H, Venne AS, Zahedi RP, Kruger M, Langer T (2017) PARL mediates Smac proteolytic maturation in mitochondria to promote apoptosis. Nat Cell Biol 19(4):318–328. https://doi.org/10.1038/ncb3488

    Article  CAS  PubMed  Google Scholar 

  8. Saita S, Tatsuta T, Lampe PA, Konig T, Ohba Y, Langer T (2018) PARL partitions the lipid transfer protein STARD7 between the cytosol and mitochondria. EMBO J 37(4). https://doi.org/10.15252/embj.201797909

  9. Koth CM, Payandeh J (2009) Strategies for the cloning and expression of membrane proteins. Adv Protein Chem Struct Biol 76:43–86. https://doi.org/10.1016/S1876-1623(08)76002-4

    Article  CAS  PubMed  Google Scholar 

  10. Bill RM, Henderson PJ, Iwata S, Kunji ER, Michel H, Neutze R, Newstead S, Poolman B, Tate CG, Vogel H (2011) Overcoming barriers to membrane protein structure determination. Nat Biotechnol 29(4):335–340. https://doi.org/10.1038/nbt.1833

    Article  CAS  PubMed  Google Scholar 

  11. Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta 1666(1–2):62–87. https://doi.org/10.1016/j.bbamem.2004.05.012

    Article  CAS  PubMed  Google Scholar 

  12. Brooks CL, Morrison M, Joanne Lemieux M (2013) Rapid expression screening of eukaryotic membrane proteins in Pichia pastoris. Protein Sci 22(4):425–433. https://doi.org/10.1002/pro.2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Girke C, Arutyunova E, Syed M, Traub M, Mohlmann T, Lemieux MJ (2015) High yield expression and purification of equilibrative nucleoside transporter 7 (ENT7) from Arabidopsis thaliana. Biochim Biophys Acta 1850(9):1921–1929. https://doi.org/10.1016/j.bbagen.2015.06.003

    Article  CAS  PubMed  Google Scholar 

  14. Hino T, Arakawa T, Iwanari H, Yurugi-Kobayashi T, Ikeda-Suno C, Nakada-Nakura Y, Kusano-Arai O, Weyand S, Shimamura T, Nomura N, Cameron AD, Kobayashi T, Hamakubo T, Iwata S, Murata T (2012) G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 482(7384):237–240. https://doi.org/10.1038/nature10750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shimamura T, Shiroishi M, Weyand S, Tsujimoto H, Winter G, Katritch V, Abagyan R, Cherezov V, Liu W, Han GW, Kobayashi T, Stevens RC, Iwata S (2011) Structure of the human histamine H1 receptor complex with doxepin. Nature 475(7354):65–70. https://doi.org/10.1038/nature10236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miller AN, Long SB (2012) Crystal structure of the human two-pore domain potassium channel K2P1. Science 335(6067):432–436. https://doi.org/10.1126/science.1213274

    Article  CAS  PubMed  Google Scholar 

  17. Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309(5736):897–903

    Article  CAS  Google Scholar 

  18. Ho JD, Yeh R, Sandstrom A, Chorny I, Harries WE, Robbins RA, Miercke LJ, Stroud RM (2009) Crystal structure of human aquaporin 4 at 1.8 A and its mechanism of conductance. Proc Natl Acad Sci U S A 106(18):7437–7442. https://doi.org/10.1073/pnas.0902725106

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tornroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, Kjellbom P (2006) Structural mechanism of plant aquaporin gating. Nature 439(7077):688–694. https://doi.org/10.1038/nature04316

    Article  CAS  PubMed  Google Scholar 

  20. Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL, Chang G (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323(5922):1718–1722. https://doi.org/10.1126/science.1168750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Norden K, Agemark M, Danielson JA, Alexandersson E, Kjellbom P, Johanson U (2011) Increasing gene dosage greatly enhances recombinant expression of aquaporins in Pichia pastoris. BMC Biotechnol 11:47. https://doi.org/10.1186/1472-6750-11-47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24(1):45–66. https://doi.org/10.1111/j.1574-6976.2000.tb00532.x

    Article  CAS  PubMed  Google Scholar 

  23. Hjelmeland LM (1990) Solubilization of native membrane proteins. Methods Enzymol 182:253–264

    Article  CAS  Google Scholar 

  24. Wagner S, Bader ML, Drew D, de Gier JW (2006) Rationalizing membrane protein overexpression. Trends Biotechnol 24(8):364–371. https://doi.org/10.1016/j.tibtech.2006.06.008

    Article  CAS  PubMed  Google Scholar 

  25. Carpenter EP, Beis K, Cameron AD, Iwata S (2008) Overcoming the challenges of membrane protein crystallography. Curr Opin Struct Biol 18(5):581–586. https://doi.org/10.1016/j.sbi.2008.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kawate T, Gouaux E (2006) Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14(4):673–681. https://doi.org/10.1016/j.str.2006.01.013

    Article  CAS  PubMed  Google Scholar 

  27. Drew DE, von Heijne G, Nordlund P, de Gier JW (2001) Green fluorescent protein as an indicator to monitor membrane protein overexpression in Escherichia coli. FEBS Lett 507(2):220–224. https://doi.org/10.1016/s0014-5793(01)02980-5

    Article  CAS  PubMed  Google Scholar 

  28. Jeyaraju DV, McBride HM, Hill RB, Pellegrini L (2011) Structural and mechanistic basis of Parl activity and regulation. Cell Death Differ 18(9):1531–1539. https://doi.org/10.1038/cdd.2011.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jeyaraju DV, Xu L, Letellier MC, Bandaru S, Zunino R, Berg EA, McBride HM, Pellegrini L (2006) Phosphorylation and cleavage of presenilin-associated rhomboid-like protein (PARL) promotes changes in mitochondrial morphology. Proc Natl Acad Sci U S A 103(49):18562–18567. https://doi.org/10.1073/pnas.0604983103. 0604983103 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sik A, Passer BJ, Koonin EV, Pellegrini L (2004) Self-regulated cleavage of the mitochondrial intramembrane-cleaving protease PARL yields Pbeta, a nuclear-targeted peptide. J Biol Chem 279(15):15323–15329. https://doi.org/10.1074/jbc.M313756200. M313756200 [pii]

    Article  CAS  PubMed  Google Scholar 

  31. Parks TD, Leuther KK, Howard ED, Johnston SA, Dougherty WG (1994) Release of proteins and peptides from fusion proteins using a recombinant plant virus proteinase. Anal Biochem 216(2):413–417. https://doi.org/10.1006/abio.1994.1060

    Article  CAS  PubMed  Google Scholar 

  32. Kapust RB, Routzahn KM, Waugh DS (2002) Processive degradation of nascent polypeptides, triggered by tandem AGA codons, limits the accumulation of recombinant tobacco etch virus protease in Escherichia coli BL21(DE3). Protein Expr Purif 24(1):61–70. https://doi.org/10.1006/prep.2001.1545

    Article  CAS  PubMed  Google Scholar 

  33. Tropea JE, Cherry S, Waugh DS (2009) Expression and purification of soluble His(6)-tagged TEV protease. Methods Mol Biol 498:297–307. https://doi.org/10.1007/978-1-59745-196-3_19

    Article  CAS  PubMed  Google Scholar 

  34. Lemieux MJ, Huang Y, Wang DN (2004) The structural basis of substrate translocation by the Escherichia coli glycerol-3-phosphate transporter: a member of the major facilitator superfamily. Curr Opin Struct Biol 14(4):405–412

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Joanne Lemieux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Arutyunova, E., Lysyk, L., Morrison, M., Brooks, C., Joanne Lemieux, M. (2021). Expression and Purification of Human Mitochondrial Intramembrane Protease PARL. In: Schmidt-Krey, I., Gumbart, J.C. (eds) Structure and Function of Membrane Proteins. Methods in Molecular Biology, vol 2302. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1394-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1394-8_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1393-1

  • Online ISBN: 978-1-0716-1394-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics