Skip to main content

Visualizing and Annotating Hi-C Data

  • Protocol
  • First Online:
Hi-C Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2301))

Abstract

Epigenomics studies require the combined analysis and integration of multiple types of data and annotations to extract biologically relevant information. In this context, sophisticated data visualization techniques are fundamental to identify meaningful patterns in the data in relation to the genomic coordinates. Data visualization for Hi-C contact matrices is even more complex as each data point represents the interaction between two distant genomic loci and their three-dimensional positioning must be considered. In this chapter we illustrate how to obtain sophisticated plots showing Hi-C data along with annotations for other genomic features and epigenomics data. For the example code used in this chapter we rely on a Bioconductor package able to handle even high-resolution Hi-C datasets. The provided examples are explained in details and highly customizable, thus facilitating their extension and adoption by end users for other studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rao SSP, Huntley MH, Durand NC et al (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–1680. https://doi.org/10.1016/j.cell.2014.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pal K, Tagliaferri I, Livi CM, Ferrari F (2019) HiCBricks: building blocks for efficient handling of large Hi-C datasets. Bioinformatics 171:557. https://doi.org/10.1093/bioinformatics/btz808

    Article  CAS  Google Scholar 

  3. Wolff J, Bhardwaj V, Nothjunge S et al (2018) Galaxy HiCExplorer: a web server for reproducible Hi-C data analysis, quality control and visualization. Nucleic Acids Res 46:W11–W16. https://doi.org/10.1093/nar/gky504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Akdemir KC, Chin L (2015) HiCPlotter integrates genomic data with interaction matrices. Genome Biol 16:198–198. https://doi.org/10.1186/s13059-015-0767-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Merelli I, Liò P, Milanesi L (2013) NuChart: an R package to study gene spatial neighbourhoods with multi-omics annotations. PLoS One 8:e75146. https://doi.org/10.1371/journal.pone.0075146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Servant N, Lajoie BR, Nora EP et al (2012) HiTC: exploration of high-throughput “C” experiments. Bioinformatics 28:2843–2844. https://doi.org/10.1093/bioinformatics/bts521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pal K, Forcato M, Jost D et al (2019) Global chromatin conformation differences in the Drosophila dosage compensated chromosome X. Nat Commun 10:5355–5316. https://doi.org/10.1038/s41467-019-13350-8

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ramírez F, Lingg T, Toscano S et al (2015) High-affinity sites form an interaction network to facilitate spreading of the MSL complex across the X chromosome in Drosophila. Mol Cell 60:146–162. https://doi.org/10.1016/j.molcel.2015.08.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Flyamer IM, Gassler J, Imakaev M et al (2017) Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544:110–114. https://doi.org/10.1038/nature21711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80–R16. https://doi.org/10.1186/gb-2004-5-10-r80

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dekker J, Belmont AS, Guttman M et al (2017) The 4D nucleome project. Nature 549:219–226. https://doi.org/10.1038/nature23884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293. https://doi.org/10.1126/science.1181369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sexton T, Yaffe E, Kenigsberg E et al (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148:458–472. https://doi.org/10.1016/j.cell.2012.01.010

    Article  CAS  PubMed  Google Scholar 

  14. Dixon JR, Selvaraj S, Yue F et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380. https://doi.org/10.1038/nature11082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Forcato M, Nicoletti C, Pal K et al (2017) Comparison of computational methods for Hi-C data analysis. Nat Methods 14:679–685. https://doi.org/10.1038/nmeth.4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. de Wit E, Bouwman BAM, Zhu Y et al (2013) The pluripotent genome in three dimensions is shaped around pluripotency factors. Nature 501:227–231. https://doi.org/10.1038/nature12420

    Article  CAS  PubMed  Google Scholar 

  17. Di Filippo L, Righelli D, Gagliardi M et al (2019) HiCeekR: a novel shiny app for Hi-C data analysis. Front Genet 10:183–116. https://doi.org/10.3389/fgene.2019.01079

    Article  CAS  Google Scholar 

  18. Wang Y, Song F, Zhang B et al (2018) The 3D genome browser: a web-based browser for visualizing 3D genome organization and long-range chromatin interactions. Genome Biol 19:151–112. https://doi.org/10.1186/s13059-018-1519-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kerpedjiev P, Abdennur N, Lekschas F et al (2018) HiGlass: web-based visual exploration and analysis of genome interaction maps. Genome Biol 19:125. https://doi.org/10.1186/s13059-018-1486-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ramírez F, Ryan DP, Grüning B et al (2016) deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 44:W160–W165. https://doi.org/10.1093/nar/gkw257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lekschas F, Bach B, Kerpedjiev P et al (2018) HiPiler: visual exploration of large genome interaction matrices with interactive small multiples. IEEE Trans Vis Comput Graph 24:522–531. https://doi.org/10.1109/TVCG.2017.2745978

    Article  PubMed  Google Scholar 

  22. Djekidel MN, Wang M, Zhang MQ, Gao J (2017) HiC-3DViewer: a new tool to visualize Hi-C data in 3D space. Quant Biol 5:183–190. https://doi.org/10.1007/s40484-017-0091-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge support by AIRC Start-up grant 2015 n.16841 to F.F.; AIRC fellowship n.21012 to K.P.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Koustav Pal or Francesco Ferrari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pal, K., Ferrari, F. (2022). Visualizing and Annotating Hi-C Data. In: Bicciato, S., Ferrari, F. (eds) Hi-C Data Analysis. Methods in Molecular Biology, vol 2301. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1390-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1390-0_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1389-4

  • Online ISBN: 978-1-0716-1390-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics