Skip to main content

Predictive Polymer Models for 3D Chromosome Organization

  • Protocol
  • First Online:
Hi-C Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2301))

Abstract

Polymer simulations and predictive mechanistic modelling are increasingly used in conjunction with experiments to study the organization of eukaryotic chromosomes. Here we review some of the most prevalent models for mechanisms which drive different aspects of chromosome organization, as well as a recent simulation scheme which combines several of these mechanisms into a single predictive model. We give some practical details of the modelling approach, as well as review some of the key results obtained by these and similar models in the last few years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cavalli G, Misteli T (2013) Functional implications of genome topology. Nat Struct Mol Biol 20(3):290–299. https://doi.org/10.1038/nsmb.2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293. https://doi.org/10.1126/science.1181369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398):376–380. https://doi.org/10.1038/nature11082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159(7):1665–1680. https://doi.org/10.1016/j.cell.2014.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sati S, Cavalli G (2017) Chromosome conformation capture technologies and their impact in understanding genome function. Chromosoma 126(1):33–44. https://doi.org/10.1007/s00412-016-0593-6

    Article  PubMed  Google Scholar 

  6. Cook PR, Marenduzzo D (2018) Transcription-driven genome organization: a model for chromosome structure and the regulation of gene expression tested through simulations. Nucleic Acids Res 46(19):9895–9906. https://doi.org/10.1093/nar/gky763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brackley CA, Marenduzzo D, Gilbert N (2020) Mechanistic modeling of chromatin folding to understand function. Nat Methods 17(8):767–775. https://doi.org/10.1038/s41592-020-0852-6

  8. Buckle A, Brackley CA, Boyle S, Marenduzzo D, Gilbert N (2018) Polymer simulations of heteromorphic chromatin predict the 3D folding of complex genomic loci. Mol Cell 72(4):786–797.e11. https://doi.org/10.1016/j.molcel.2018.09.016

  9. Cremer T, Cremer M, Hübner B, Strickfaden H, Smeets D, Popken J, Sterr M, Markaki Y, Rippe K, Cremer C (2015) The 4D nucleome: evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments. FEBS Lett 589(20 Pt A):2931–2943. https://doi.org/10.1016/j.febslet.2015.05.037

  10. Hsieh THS, Weiner A, Lajoie B, Dekker J, Friedman N, Rando OJ (2015) Mapping nucleosome resolution chromosome folding in yeast by micro-C. Cell 162(1):108–119. https://doi.org/10.1016/j.cell.2015.05.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Le TBK, Imakaev MV, Mirny LA, Laub MT (2013) High-resolution mapping of the spatial organization of a bacterial chromosome. Science 342(6159):731–734. https://doi.org/10.1126/science.1242059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Murayama Y, Uhlmann F (2015) DNA entry into and exit out of the cohesin ring by an interlocking gate mechanism. Cell 163(7):1628–1640. https://doi.org/10.1016/j.cell.2015.11.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nasmyth K (2001) Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu Rev Genet 35(1):673–745. https://doi.org/10.1146/annurev.genet.35.102401.091334

    Article  CAS  PubMed  Google Scholar 

  14. Hsieh THS, Cattoglio C, Slobodyanyuk E, Hansen AS, Rando OJ, Tjian R, Darzacq X (2020) Resolving the 3D landscape of transcription-linked mammalian chromatin folding. Mol Cell 78(3):539–553.e8. https://doi.org/10.1016/j.molcel.2020.03.002

  15. Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38(11):1348–1354. https://doi.org/10.1038/ng1896

    Article  CAS  PubMed  Google Scholar 

  16. Lupiáñez DG, Spielmann M, Mundlos S (2016) Breaking TADs: how alterations of chromatin domains result in disease. Trends Genet 32(4):225–237. https://doi.org/10.1016/j.tig.2016.01.003

    Article  PubMed  CAS  Google Scholar 

  17. Brackley CA, Taylor S, Papantonis A, Cook PR, Marenduzzo D (2013) Nonspecific bridging-induced attraction drives clustering of DNA-binding proteins and genome organization. Proc Natl Acad Sci U S A 110(38):E3605–E3611. https://doi.org/10.1073/pnas.1302950110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brackley CA, Johnson J, Kelly S, Cook PR, Marenduzzo D (2016) Simulated binding of transcription factors to active and inactive regions folds human chromosomes into loops, rosettes and topological domains. Nucleic Acids Res 44(8):3503–3512. https://doi.org/10.1093/nar/gkw135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Barbieri M, Chotalia M, Fraser J, Lavitas LM, Dostie J, Pombo A, Nicodemi M (2012) Complexity of chromatin folding is captured by the strings and binders switch model. Proc Natl Acad Sci U S A 109(40):16173–16178. https://doi.org/10.1073/pnas.1204799109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chiariello AM, Annunziatella C, Bianco S, Esposito A, Nicodemi M (2016) Polymer physics of chromosome large-scale 3D organisation. Sci Rep 6:29775. https://doi.org/10.1038/srep29775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA (2016) Formation of chromosomal domains by loop extrusion. Cell Rep 15(9):2038–2049. https://doi.org/10.1016/j.celrep.2016.04.085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jost D, Carrivain P, Cavalli G, Vaillant C (2014) Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains. Nucleic Acids Res 42(15):9553–9561. https://doi.org/10.1093/nar/gku698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Michieletto D, Orlandini E, Marenduzzo D (2016) Polymer model with epigenetic recoloring reveals a pathway for the de novo establishment and 3D organization of chromatin domains. Phys Rev X 6(4):041047. https://doi.org/10.1103/PhysRevX.6.041047

    Google Scholar 

  24. Brackley CA (2020) Polymer compaction and bridging-induced clustering of protein-inspired patchy particles. J Phys Condens Matter 32(31):314002. https://doi.org/10.1088/1361-648X/ab7f6c

    Article  CAS  PubMed  Google Scholar 

  25. Brackley CA, Liebchen B, Michieletto D, Mouvet F, Cook PR, Marenduzzo D (2017) Ephemeral protein binding to DNA shapes stable nuclear bodies and chromatin domains. Biophys J 112(6):1085–1093. https://doi.org/10.1016/j.bpj.2017.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mao YS, Zhang B, Spector DL (2011) Biogenesis and function of nuclear bodies. Trends Genet 27(8):295–306. https://doi.org/10.1016/j.tig.2011.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marenduzzo D, Orlandini E (2009) Topological and entropic repulsion in biopolymers. J Stat Mech: Theory Exp 2009(9):L09002. https://doi.org/10.1088/1742-5468/2009/09/L09002

    Article  CAS  Google Scholar 

  28. Pereira MCF, Brackley CA, Michieletto D, Annunziatella C, Bianco S, Chiariello AM, Nicodemi M, Marenduzzo D (2018) Complementary chromosome folding by transcription factors and cohesin. bioRxiv. https://doi.org/10.1101/305359

  29. Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, Zhang X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein BE (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473(7345):43–49. https://doi.org/10.1038/nature09906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brackley CA, Brown JM, Waithe D, Babbs C, Davies J, Hughes JR, Buckle VJ, Marenduzzo D (2016) Predicting the three-dimensional folding of cis-regulatory regions in mammalian genomes using bioinformatic data and polymer models. Genome Biol 17:59. https://doi.org/10.1186/s13059-016-0909-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Alipour E, Marko JF (2012) Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res 40(22):11202–11212. https://doi.org/10.1093/nar/gks925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sanborn AL, Rao SSP, Huang SC, Durand NC, Huntley MH, Jewett AI, Bochkov ID, Chinnappan D, Cutkosky A, Li J, Geeting KP, Gnirke sA, Melnikov A, McKenna D, Stamenova EK, Lander ES, Aiden EL (2015) Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc Natl Acad Sci U S A 112(47):E6456–E6465. https://doi.org/10.1073/pnas.1518552112

  33. Xiao T, Wallace J, Felsenfeld G (2011) Specific sites in the C terminus of CTCF interact with the SA2 subunit of the cohesin complex and are required for cohesin-dependent insulation activity. Mol Cell Biol 31(11):2174–2183. https://doi.org/10.1128/MCB.05093-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Terakawa T, Bisht S, Eeftens JM, Dekker C, Haering CH, Greene EC (2017) The condensin complex is a mechanochemical motor that translocates along DNA. Science 358(6363):672–676. https://doi.org/10.1126/science.aan6516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ganji M, Shaltiel IA, Bisht S, Kim E, Kalichava A, Haering CH, Dekker C (2018) Real-time imaging of DNA loop extrusion by condensin. Science 360(6384):102–105. https://doi.org/10.1126/science.aar7831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Davidson IF, Bauer B, Goetz D, Tang W, Wutz G, Peters JM (2019) DNA loop extrusion by human cohesin. Science 366(6471):1338–1345. https://doi.org/10.1126/science.aaz3418

    Article  CAS  PubMed  Google Scholar 

  37. Stigler J, Çamdere GÖ, Koshland DE, Greene EC (2016) Single-molecule imaging reveals a collapsed conformational state for DNA-bound cohesin. Cell Rep 15(5):988–998. https://doi.org/10.1016/j.celrep.2016.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Davidson IF, Goetz D, Zaczek MP, Molodtsov MI, Huis in ’t Veld PJ, Weissmann F, Litos G, Cisneros DA, Ocampo-Hafalla M, Ladurner R, Uhlmann F, Vaziri A, Peters JM (2016) Rapid movement and transcriptional re-localization of human cohesin on DNA. EMBO J 35(24):2671–2685. https://doi.org/10.15252/embj.201695402

  39. Kanke M, Tahara E, Huis in’t Veld PJ, Nishiyama T (2016) Cohesin acetylation and Wapl-Pds5 oppositely regulate translocation of cohesin along DNA. EMBO J 35(24):2686–2698. https://doi.org/10.15252/embj.201695756

  40. Brackley CA, Johnson J, Michieletto D, Morozov AN, Nicodemi M, Cook PR, Marenduzzo D (2017) Nonequilibrium chromosome looping via molecular slip links. Phys Rev Lett 119(13):138101. https://doi.org/10.1103/PhysRevLett.119.138101

    Article  CAS  PubMed  Google Scholar 

  41. Brackley CA, Johnson J, Michieletto D, Morozov AN, Nicodemi M, Cook PR, Marenduzzo D (2018) Extrusion without a motor: a new take on the loop extrusion model of genome organization. Nucleus 9(1):95–103. https://doi.org/10.1080/19491034.2017.1421825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Uhlmann F (2016) SMC complexes: from DNA to chromosomes. Nat Rev Mol Cell Biol 17(7):399–412. https://doi.org/10.1038/nrm.2016.30

    Article  CAS  PubMed  Google Scholar 

  43. Nora EP, Goloborodko A, Valton AL, Gibcus JH, Uebersohn A, Abdennur N, Dekker J, Mirny LA, Bruneau BG (2017) Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169(5):930–944.e22. https://doi.org/10.1016/j.cell.2017.05.004

  44. Rao SSP, Huang SC, Glenn St Hilaire B, Engreitz JM, Perez EM, Kieffer-Kwon KR, Sanborn AL, Johnstone SE, Bascom GD, Bochkov ID, Huang X, Shamim MS, Shin J, Turner D, Ye Z, Omer AD, Robinson JT, Schlick T, Bernstein BE, Casellas R, Lander ES, Aiden EL (2017) Cohesin loss eliminates all loop domains. Cell 171(2):305–320.e24. https://doi.org/10.1016/j.cell.2017.09.026

  45. Schwarzer W, Abdennur N, Goloborodko A, Pekowska A, Fudenberg G, Loe-Mie Y, Fonseca NA, Huber W, Haering CH, Mirny L, Spitz F (2017) Two independent modes of chromatin organization revealed by cohesin removal. Nature 551(7678):51–56. https://doi.org/10.1038/nature24281

    Article  PubMed  PubMed Central  Google Scholar 

  46. Haarhuis JHI, van der Weide RH, Blomen VA, Yáñez-Cuna JO, Amendola M, van Ruiten MS, Krijger PHL, Teunissen H, Medema RH, van Steensel B, Brummelkamp TR, de Wit E, Rowland BD (2017) The cohesin release factor WAPL restricts chromatin loop extension. Cell 169(4):693–707.e14. https://doi.org/10.1016/j.cell.2017.04.013

  47. Wutz G, Várnai C, Nagasaka K, Cisneros DA, Stocsits RR, Tang W, Schoenfelder S, Jessberger G, Muhar M, Hossain MJ, Walther N, Koch B, Kueblbeck M, Ellenberg J, Zuber J, Fraser P, Peters JM (2017) Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J 36(24):3573–3599. https://doi.org/10.15252/embj.201798004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chong S, Dugast-Darzacq C, Liu Z, Dong P, Dailey GM, Cattoglio C, Heckert A, Banala S, Lavis L, Darzacq X, Tjian R (2018) Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 361(6400):eaar2555. https://doi.org/10.1126/science.aar2555

  49. Cho WK, Spille JH, Hecht M, Lee C, Li C, Grube V, Cisse II (2018) Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361(6400):412–415. https://doi.org/10.1126/science.aar4199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Boyle S, Flyamer IM, Williamson I, Sengupta D, Bickmore WA, Illingworth RS (2020) A central role for canonical PRC1 in shaping the 3D nuclear landscape. Genes Dev 34(13–14):931–949. https://doi.org/10.1101/gad.336487.120

  51. Fredrickson G (2005) The equilibrium theory of inhomogeneous polymers. Oxford University Press, Oxford. https://doi.org/10.1093/acprof:oso/9780198567295.001.0001

  52. Michieletto D, Chiang M, Colì D, Papantonis A, Orlandini E, Cook PR, Marenduzzo D (2018) Shaping epigenetic memory via genomic bookmarking. Nucleic Acids Res 46(1):83–93. https://doi.org/10.1093/nar/gkx1200

    Article  CAS  PubMed  Google Scholar 

  53. Chiang M, Michieletto D, Brackley CA, Rattanavirotkul N, Mohammed H, Marenduzzo D, Chandra T (2019) Polymer modeling predicts chromosome reorganization in senescence. Cell Rep 28(12):3212–3223.e6. https://doi.org/10.1016/j.celrep.2019.08.045

  54. Falk M, Feodorova Y, Naumova N, Imakaev M, Lajoie BR, Leonhardt H, Joffe B, Dekker J, Fudenberg G, Solovei I, Mirny LA (2019) Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature 570(7761):395–399. https://doi.org/10.1038/s41586-019-1275-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nuebler J, Fudenberg G, Imakaev M, Abdennur N, Mirny LA (2018) Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proc Natl Acad Sci U S A 115(29):E6697–E6706. https://doi.org/10.1073/pnas.1717730115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hughes JR, Roberts N, McGowan S, Hay D, Giannoulatou E, Lynch M, de Gobbi M, Taylor S, Gibbons R, Higgs DR (2014) Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat Genet 46(2):205–212. https://doi.org/10.1038/ng.2871

    Article  CAS  PubMed  Google Scholar 

  57. Davies JOJ, Telenius JM, McGowan SJ, Roberts NA, Taylor S, Higgs DR, Hughes JR (2016) Multiplexed analysis of chromosome conformation at vastly improved sensitivity. Nat Methods 13(1):74–80. https://doi.org/10.1038/nmeth.3664

    Article  CAS  PubMed  Google Scholar 

  58. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  59. Hajjoul H, Mathon J, Ranchon H, Goiffon I, Mozziconacci J, Albert B, Carrivain P, Victor JM, Gadal O, Bystricky K, Bancaud A (2013) High-throughput chromatin motion tracking in living yeast reveals the flexibility of the fiber throughout the genome. Genome Res 23(11):1829–1838. https://doi.org/10.1101/gr.157008.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Goloborodko A, Marko JF, Mirny LA (2016) Chromosome compaction by active loop extrusion. Biophys J 110(10):2162–2168. https://doi.org/10.1016/j.bpj.2016.02.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS (2008) Model-based analysis of ChIP-seq (MACS). Genome Biol 9(9):R137. https://doi.org/10.1186/gb-2008-9-9-r137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Stovner EB, Sætrom P (2019) epic2 efficiently finds diffuse domains in ChIP-seq data. Bioinformatics 35(21):4392–4393. https://doi.org/10.1093/bioinformatics/btz232

    Article  CAS  PubMed  Google Scholar 

  63. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842. https://doi.org/10.1093/bioinformatics/btq033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fornes O, Castro-Mondragon JA, Khan A, van der Lee R, Zhang X, Richmond PA, Modi BP, Correard S, Gheorghe M, Baranašić D, Santana-Garcia W, Tan G, Chèneby J, Ballester B, Parcy F, Sandelin A, Lenhard B, Wasserman WW, Mathelier A (2020) JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res 48(D1):D87–D92. https://doi.org/10.1093/nar/gkz1001

    CAS  PubMed  Google Scholar 

  65. Grant CE, Bailey TL, Noble WS (2011) FIMO: scanning for occurrences of a given motif. Bioinformatics 27(7):1017–1018. https://doi.org/10.1093/bioinformatics/btr064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Serra F, Di Stefano M, Spill YG, Cuartero Y, Goodstadt M, Baù D, Marti-Renom MA (2015) Restraint-based three-dimensional modeling of genomes and genomic domains. FEBS Lett 589(20 Pt A):2987–2995. https://doi.org/10.1016/j.febslet.2015.05.012

  67. Risca VI, Denny SK, Straight AF, Greenleaf WJ (2017) Variable chromatin structure revealed by in situ spatially correlated DNA cleavage mapping. Nature 541(7636):237–241. https://doi.org/10.1038/nature20781

    Article  CAS  PubMed  Google Scholar 

  68. Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, Laue ED, Tanay A, Fraser P (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502(7469):59–64. https://doi.org/10.1038/nature12593

    Article  CAS  PubMed  Google Scholar 

  69. Bintu B, Mateo LJ, Su JH, Sinnott-Armstrong NA, Parker M, Kinrot S, Yamaya K, Boettiger AN, Zhuang X (2018) Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362(6413):eaau1783. https://doi.org/10.1126/science.aau1783

  70. Finn EH, Pegoraro G, Brandão HB, Valton AL, Oomen ME, Dekker J, Mirny L, Misteli T (2019) Extensive heterogeneity and intrinsic variation in spatial genome organization. Cell 176(6):1502–1515.e10. https://doi.org/10.1016/j.cell.2019.01.020

  71. Vernimmen D, Marques-Kranc F, Sharpe JA, Sloane-Stanley JA, Wood WG, Wallace HAC, Smith AJH, Higgs DR (2009) Chromosome looping at the human α-globin locus is mediated via the major upstream regulatory element (HS -40). Blood 114(19):4253–4260. https://doi.org/10.1182/blood-2009-03-213439

    Article  CAS  PubMed  Google Scholar 

  72. Chittock EC, Latwiel S, Miller TCR, Müller CW (2017) Molecular architecture of polycomb repressive complexes. Biochem Soc Trans 45(1):193–205. https://doi.org/10.1042/BST20160173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X, Karpen GH (2017) Phase separation drives heterochromatin domain formation. Nature 547(7662):241–245. https://doi.org/10.1038/nature22989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shaban HA, Barth R, Recoules L, Bystricky K (2020) Hi-D: nanoscale mapping of nuclear dynamics in single living cells. Genome Biol 21(1):95. https://doi.org/10.1186/s13059-020-02002-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shaban HA, Seeber A (2020) Monitoring the spatio-temporal organization and dynamics of the genome. Nucleic Acids Res 48(7):3423–3434. https://doi.org/10.1093/nar/gkaa135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Benabdallah NS, Williamson I, Illingworth RS, Kane L, Boyle S, Sengupta D, Grimes GR, Therizols P, Bickmore WA (2019) Decreased enhancer-promoter proximity accompanying enhancer activation. Mol Cell 76(3):473–484.e7

    Google Scholar 

Download references

Acknowledgements

This work was supported by ERC (CoG 648050, THREEDCELLPHYSICS). M.C. acknowledges the Carnegie Trust for the Universities of Scotland for PhD studentship funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Marenduzzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chiang, M., Forte, G., Gilbert, N., Marenduzzo, D., Brackley, C.A. (2022). Predictive Polymer Models for 3D Chromosome Organization. In: Bicciato, S., Ferrari, F. (eds) Hi-C Data Analysis. Methods in Molecular Biology, vol 2301. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1390-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1390-0_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1389-4

  • Online ISBN: 978-1-0716-1390-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics