Skip to main content

Polymer Folding Simulations from Hi-C Data

  • Protocol
  • First Online:
Hi-C Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2301))

  • 2188 Accesses

Abstract

In the absence of a clear molecular understanding of the mechanism that stabilizes specific contacts in interphasic chromatin, we resort to the principle of maximum entropy to build a polymeric model based on the Hi-C data of the specific system one wants to study. The interactions are set by an iterative Monte Carlo algorithm to reproduce the average contacts summarized by the Hi-C map. The study of the ensemble of conformations generated by the algorithm can report a much richer set of information than the experimental map alone, including colocalization of multiple sites, fluctuations of the contacts, and kinetical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295:1306–1311

    Article  CAS  PubMed  Google Scholar 

  2. Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Giorgetti L, Galupa R, Nora EP et al (2014) Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell 157:950–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nagano T, Lubling Y, Stevens TJ et al (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502:59–64

    Article  CAS  PubMed  Google Scholar 

  5. Tiana G, Amitai A, Pollex T et al (2016) Structural fluctuations of the chromatin fiber within topologically associating domains. Biophys J 110:1234–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jost D, Carrivain P, Cavalli G, Vaillant C (2014) Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains. Nucleic Acids Res 42:9553–9561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barbieri M, Chotalia M, Fraser J et al (2012) Complexity of chromatin folding is captured by the strings and binders switch model. Proc Natl Acad Sci U S A 109:16173–16178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Benedetti F, Dorier J, Burnier Y, Stasiak A (2013) Models that include supercoiling of topological domains reproduce several known features of interphase chromosomes. Nucleic Acids Res 42:2848–2855

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brackley CA, Taylor S, Papantonis A et al (2013) Nonspecific bridging-induced attraction drives clustering of DNA-binding proteins and genome organization. Proc Natl Acad Sci U S A 110:E3605–E3611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brackley CA, Johnson J, Michieletto D et al (2017) Nonequilibrium chromosome looping via molecular slip links. Phys Rev Lett 119:138101

    Article  CAS  PubMed  Google Scholar 

  11. Fudenberg G, Imakaev M, Lu C et al (2016) Formation of chromosomal domains by loop extrusion. Cell Rep 15:2038–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Davidson IF, Bauer B, Goetz D et al (2019) DNA loop extrusion by human cohesin. Science 366:1338–1345. https://doi.org/10.1126/science.aaz3418

    Article  CAS  PubMed  Google Scholar 

  13. Kim Y, Shi Z, Zhang H et al (2019) Human cohesin compacts DNA by loop extrusion. Science 366(6471):1345–1349. https://doi.org/10.1126/science.aaz4475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620–630

    Article  Google Scholar 

  15. Redolfi J, Zhan Y, Valdes-Quezada C et al (2019) DamC reveals principles of chromatin folding in vivo without crosslinking and ligation. Nat Struct Mol Biol 26:471–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhan Y, Giorgetti L, Tiana G (2017) Modelling genome-wide topological associating domains in mouse embryonic stem cells. Chromosom Res 25:5–14

    Article  CAS  Google Scholar 

  17. Tiana G, Giorgetti L (2018) Integrating experiment, theory and simulation to determine the structure and dynamics of mammalian chromosomes. Curr Opin Struct Biol 49:11–17

    Article  CAS  PubMed  Google Scholar 

  18. Tiana G, Villa F, Zhan Y et al (2014) MonteGrappa: an iterative Monte Carlo program to optimize biomolecular potentials in simplified models. Comput Phys Commun 186:93–104

    Article  Google Scholar 

  19. Norgaard AB, Ferkinghoff-Borg J, Lindorff-Larsen K (2008) Experimental parameterization of an energy function for the simulation of unfolded proteins. Biophys J 94:182–192

    Article  CAS  PubMed  Google Scholar 

  20. Olivares-Chauvet P, Mukamel Z, Lifshitz A et al (2016) Capturing pairwise and multi-way chromosomal conformations using chromosomal walks. Nature 540:296–300

    Article  CAS  PubMed  Google Scholar 

  21. Ferrenberg A, Swendsen R (1989) Optimized Monte Carlo data analysis. Phys Rev Lett 63:1195–1198

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Tiana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhan, Y., Giorgetti, L., Tiana, G. (2022). Polymer Folding Simulations from Hi-C Data. In: Bicciato, S., Ferrari, F. (eds) Hi-C Data Analysis. Methods in Molecular Biology, vol 2301. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1390-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1390-0_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1389-4

  • Online ISBN: 978-1-0716-1390-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics