Skip to main content

Analysis of Biofilm Matrix by Multiplex Fluorescence In Situ Hybridization (M-FISH) and Confocal Laser Scanning Microscopy (CLSM) During Nosocomial Infections

  • Protocol
  • First Online:
Analytical Methodologies for Biofilm Research

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Biofilm is the syntrophic consortium of the microorganisms that mainly comprises sessile communities of bacterial cells that adhere to inanimate or living surfaces with the help of extracellular polymeric substance (EPS) and pili by forming a matrix composed of exopolysaccharide, DNA, and proteins (polymeric conglomeration). The presence of various phenotypes within the biofilm can be determined with the help of the multiplex fluorescence in situ hybridization (M-FISH). High resolution 3D structures of the sessile communities found within the biofilm can be observed by the use of confocal laser scanning microscopy (CLSM). This chapter will focus on the application of M-FISH in studying the various types of sessile cells responsible for the development of the biofilm causing nosocomial diseases and the use of CLSM in the qualitative and quantitative analysis of the biofilm forming various nosocomial diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Costerton JW (2007) The biofilm primer, vol 1, 1st edn. Springer-Verlag, Berlin, p 56

    Book  Google Scholar 

  2. Flemming H-C, Neu TR, Wozniak DJ (2007) The EPS matrix: the “house of biofilm cells”. J Bacteriol 189:7945–7947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Almeida C, Azevedo NF, Santos S et al (2011) Discriminating multi-species populations in biofilms with peptide nucleic acid fluorescence in situ hybridization (PNA FISH). PLoS One 6:e14786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Al-Ahmad A, Wunder A, Auschill TM et al (2007) The in vivo dynamics of Streptococcus spp., Actinomyces naeslundii, Fusobacterium nucleatum and Veillonella spp. in dental plaque biofilm as analysed by five-colour multiplex fluorescence in situ hybridization. J Med Microbiol 56:681–687

    Article  CAS  PubMed  Google Scholar 

  5. Thurnheer T, Gmür R, Guggenheim B (2004) Multiplex FISH analysis of a six-species bacterial biofilm. J Microbiol Methods 56:37–47

    Article  CAS  PubMed  Google Scholar 

  6. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Amann R, Fuchs BM (2008) Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol 6:339–348

    Article  CAS  PubMed  Google Scholar 

  8. Foster JS, Palmer RJ Jr, Kolenbrander PE (2003) Human oral cavity as a model for the study of genome–genome interactions. Biol Bull 204:200–204

    Article  CAS  PubMed  Google Scholar 

  9. Karygianni L, Hellwig E, Al-Ahmad A, Donelli G (2014) Microbial biofi lms: methods and protocols, Methods in molecular biology, vol 1147. Springer, New York. https://doi.org/10.1007/978-1-4939-0467-9_5

    Book  Google Scholar 

  10. Li J, Helmerhorst EJ, Leone CW et al (2004) Identification of early microbial colonizers in human dental biofilm. J Appl Microbiol 97:1311–1318

    Article  CAS  PubMed  Google Scholar 

  11. Al-Ahmad A, Follo M, Selzer AC et al (2009) Bacterial colonization of enamel in situ investigated using fluorescence in situ hybridization. J Med Microbiol 58:1359–1366

    Article  CAS  PubMed  Google Scholar 

  12. Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE (1991) Optical sectioning of microbial biofilms. J Bacteriol 173:6558–6567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wimpenny J, Manz W, Szewzyk U (2000) Heterogeneity in biofilms. FEMS Microbiol Rev 24:661–671

    Article  CAS  PubMed  Google Scholar 

  15. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wallner G, Amann R, Beisker W (1993) Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14:136–143

    Article  CAS  PubMed  Google Scholar 

  17. Babot JD, Hidalgo M, Arganaraz-Martinez E, Apella MC, Perez Chaia A (2011) Fluorescence in situ hybridization for detection of classical propionibacteria with specific 16S rRNA-targeted probes and its application to enumeration in Gruyere cheese. Int J Food Microbiol 145:221–228

    Article  CAS  PubMed  Google Scholar 

  18. Lorenzo-Pisarello MJ, Gultemirian ML, Nieto-Penalver C, Perez Chaia A (2010) Propionibacterium acidipropionici CRL1198 influences the production of acids and the growth of bacterial genera stimulated by inulin in a murine model of cecal slurries. Anaerobe 16:345–354

    Article  CAS  PubMed  Google Scholar 

  19. Kolloffel B, Meile L, Teuber M (1999) Analysis of brevibacteria on the surface of Gruyere cheese detected by in situ hybridization and by colony hybridization. Lett Appl Microbiol 29:317–322

    Article  Google Scholar 

  20. Miks-Krajnik M, Babuchowski A, Białobrzewski I (2013) Impact of physiological state of starter culture on ripening and flavour development of Swiss–Dutch-type cheese. Int J Dairy Technol 66:565–569

    Google Scholar 

  21. Pernthaler J, Glockner FO, Schonhuber W, Amann R (2001) Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes. Methods Microbiol 30:207–226

    Article  CAS  Google Scholar 

  22. Stender H (2003) PNA FISH: an intelligent stain for rapid diagnosis of infectious diseases. Expert Rev Mol Diagn 3(5):649–655

    Article  CAS  PubMed  Google Scholar 

  23. Foster JS, Kolenbrander PE (2004) Development of a multispecies oral bacterial community in a saliva-conditioned flow cell. Appl Environ Microbiol 70:4340–4348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Paster BJ, Bartoszyk IM, Dewhirst FE (1998) Identification of oral streptococci using PCRbased, reverse-capture, checkerboard hybridization. Methods Cell Sci 20:223–223

    Article  Google Scholar 

  25. Kirketerp-Moller K, Jensen PO, Fazli M et al (2008) Distribution, organization, and ecology of bacteria in chronic wounds. J Clin Microbiol 46:2717–2722

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gu B, Kelesidis T, Tsiodras S et al (2013) The emerging problem of linezolid-resistant staphylococcus. J Antimicrob Chemother 68:4–11

    Article  CAS  PubMed  Google Scholar 

  27. Moter A, Gobel UB (2000) Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods 41:85–112

    Article  CAS  PubMed  Google Scholar 

  28. Loy A, Horn M, Wagner M (2003) probeBase: an online resource for rRNA-targeted oligonucleotide probes. Nucleic Acids Res 31:514–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nederlof PM, van der Flier S, Wiegant J et al (1990) Multiple fluorescence in situ hybridization. Cytometry 11:126–131

    Article  CAS  PubMed  Google Scholar 

  30. Muresu R, Rubino S, Rizzu P et al (1994) A new method for identification of Trichomonas vaginalis by fluorescent DNA in situ hybridization. J Clin Microbiol 32:1018–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Marsh PD, Bradshaw DJ (1995) Dental plaque as a biofilm. J Ind Microbiol 15:169–175

    Article  CAS  PubMed  Google Scholar 

  32. Amann R, Snaidr J, Wagner M, Ludwig W, Schleifer KH (1996) In situ visualization of high genetic diversity in a natural microbial community. J Bacteriol 178:3496–3500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Perry-O’Keefe H, Rigby S, Oliveira K, Sorensen D, Slender H, Coull J, Hyldig-Nielsen JJ (2001) Identification of indicator microorganisms using a standardized PNA FISH method. J Microbiol Methods 47:281–292

    Article  PubMed  Google Scholar 

  34. Borlee BR, Goldman AD, Murakami K, Samudrala R, Wozniak DJ, Parsek MR (2010) Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol 75:827–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Colvin KM, Irie Y, Tart CS, Urbano R, Whitney JC, Ryder C et al (2012) The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix: polysaccharides of the P. aeruginosa biofilm matrix. Environ Microbiol 14:1913–1928

    Article  CAS  PubMed  Google Scholar 

  36. Heydorn A, Ersbøll BK, Hentzer M, Parsek MR, Givskov M, Molin S (2000a) Experimental reproducibility in flow-chamber biofilms. Microbiology 146:2409–2415

    Article  CAS  PubMed  Google Scholar 

  37. Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersbøll BK et al (2000b) Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146:2395–2407

    Article  CAS  PubMed  Google Scholar 

  38. Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633

    Article  CAS  PubMed  Google Scholar 

  39. Rasconi S, Jobard M, Jouve L, Sime-Ngando T (2009) Use of calcofluor white for detection, identification, and quantification of phytoplanktonic fungal parasites. Appl Environ Microbiol 75(8):2545–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sadovskaya I, Vinogradov E, Flahaut S, Kogan G, Jabbouri S (2005) Extracellular carbohydratecontaining polymers of a model biofilm-producing strain, Staphylococcus epidermidis RP62A. Infect Immun 73(5):3007–3017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Neu T, Swerhone GD, Lawrence JR (2001) Assessment of lectin-binding analysis for in situ detection of glycoconjugates in biofilm systems. Microbiology 147(Pt 2):299–313

    Article  CAS  PubMed  Google Scholar 

  42. Lawrence JR, Swerhone GDW, Kuhlicke U, Neu TR (2007) In situ evidence for microdomains in the polymer matrix of bacterial microcolonies. Can J Microbiol 53:450–458

    Article  CAS  PubMed  Google Scholar 

  43. Nguyen MH, Ojima Y, Sakka M, Sakka K, Taya M (2014) Probing of exopolysaccharides with green fluorescence protein-labeled carbohydrate-binding module in Escherichia coli biofilms and flocs induced by bcsB overexpression. J Biosci Bioeng 118(4):400–405

    Article  CAS  PubMed  Google Scholar 

  44. Büttner H, Mack D, Rohde H (2015) Structural basis of Staphylococcus epidermidis biofilm formation: mechanisms and molecular interactions. Front Cell Infect Microbiol 5:14. Foster TJ, Höök, M (1998) Surface protein adhesins of Staphylococcus aureus. Trends Microbiol 6(12):484–488

    PubMed  PubMed Central  Google Scholar 

  45. Lawrence JR, Swerhone GDW, Leppard GG, Araki T, Zhang X, West MM, Hitchcock AP (2003) Scanning transmission X-ray, laser scanning, and transmission electron microscopy mapping of the exopolymeric matrix of microbial biofilms. Appl Environ Microbiol 69(9):5543–5554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Webster P, Wu S, Gomez G, Apicella M, Plaut AG, St Geme JW (2006) Distribution of bacterial proteins in biofilms formed by non-typeable Haemophilus influenzae. J Histochem Cytochem 54(7):829–842

    Article  CAS  PubMed  Google Scholar 

  47. Gusel’nikova V, Antimonova O, Fedorova E, Shavlovsky M, Krutikov A, Mikhailova E, Korzhevskii D (2018) Fluorescent characterization of amyloid deposits in the kidneys of mdx mice. Eur J Histochem 62(2):2870

    PubMed  PubMed Central  Google Scholar 

  48. Larsen P, Nielsen JL, Dueholm MS, Wetzel R, Otzen D, Nielsen PH (2007) Amyloid adhesins are abundant in natural biofilms. Environ Microbiol 9(12):3077–3090

    Article  CAS  PubMed  Google Scholar 

  49. Kim J-Y, Sahu S, Yau Y-H, Wang X, Shochat SG, Nielsen PH, Dueholm MS, Otzen DE, Lee J, Santos D, Salido MM, Yam JKH, Kang N-Y, Park S-J, Kwon H, Seviour T, Yang L, Givskov M, Chang Y-T (2016) Detection of pathogenic biofilms with bacterial amyloid targeting fluorescent probe, CDy11. J Am Chem Soc 138(1):402–407

    Article  CAS  PubMed  Google Scholar 

  50. Das T, Kutty SK, Kumar N, Manefield M (2013) Pyocyanin facilitates extracellular DNA binding to Pseudomonas aeruginosa influencing cell surface properties and aggregation. PLoS One 8(3):e58299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huseby MJ, Kruse AC, Digre J, Kohler PL, Vocke JA, Mann EE, Bayles KW, Bohach GA, Schlievert PM, Ohlendorf DH, Earhart CA (2010) Beta toxin catalyzes formation of nucleoprotein matrix in staphylococcal biofilms. Proc Natl Acad Sci U S A 107(32):14407–14412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, Molin S, Givskov M, Tolker-Nielsen T (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59(4):1114–1128

    Article  CAS  Google Scholar 

  53. Okshevsky M, Meyer RL (2014) Evaluation of fluorescent stains for visualizing extracellular DNA in biofilms. J Microbiol Methods 105:102–104

    Article  CAS  PubMed  Google Scholar 

  54. Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34(6):1037–1062

    Article  CAS  PubMed  Google Scholar 

  55. Zuriani R, Vigneswari S, Azizan MNM, Majid MIA, Amirul AA (2013) A high throughput Nile red fluorescence method for rapid quantification of intracellular bacterial polyhydroxyalkanoates. Biotechnol Bioproc E 18(3):472–478

    Article  CAS  Google Scholar 

  56. Baird FJ, Wadsworth MP, Hill JE (2012) Evaluation and optimization of multiple fluorophore analysis of a Pseudomonas aeruginosa biofilm. J Microbiol Methods 90(3):192–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bandara HMHN et al (2010) Research article Pseudomonas aeruginosa inhibits in-vitro Candida biofilm development. BMC Microbiol 10:1–9

    Article  Google Scholar 

  58. Bjarnsholt T et al (2013) Applying insights from biofilm biology to drug development — can a new approach be developed? Drug Discov Nat Rev 12:791–808

    Article  CAS  Google Scholar 

  59. Vyas N et al (2016) A quantitative method to measure biofilm removal efficiency from complex biomaterial surfaces using SEM and image analysis. Sci Rep 6:1–10

    Article  CAS  Google Scholar 

  60. Schindelin J et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  61. Chimileski S et al (2014) Biofilms formed by the archaeon Haloferax volcanii exhibit cellular differentiation and social motility, and facilitate horizontal gene transfer. BMC Biol 12:1–15

    Article  CAS  Google Scholar 

  62. Rice KC et al (2007) The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc Natl Acad Sci U S A 104:8113–8118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Berney M, Hammes F, Bosshard F, Weilenmann HU, Egli T (2007) Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight kit in combination with flow cytometry. Appl Environ Microbiol 73(10):3283–3290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sanchez Z et al (2013) Extensive reduction of cell viability and enhanced matrix production in Pseudomonas aeruginosa PAO1 flow biofilms treated with a D-amino acid mixture. Appl Environ Microbiol 79:1396–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tsai YJ et al (2013) Biofilm formations in nasopharyngeal tissues of patients with nasopharyngeal osteoradionecrosis. Otolaryngol Head Neck Surg 148:633–636

    Article  PubMed  Google Scholar 

  66. Johnson L et al (2013) Extracellular DNA-induced antimicrobial peptide resistance in Salmonella enterica serovar Typhimurium. BMC Microbiol 13:1–8

    Article  CAS  Google Scholar 

  67. Bridier A et al (2011) Dynamics of the action of biocides in Pseudomonas aeruginosa biofilms. Antimicrobial Agents Chemother 55:2648–2654

    Article  CAS  Google Scholar 

  68. Bridier A, Dubois-Brissonnet F, Boubetra A, Thomas V, Briandet R (2010) The biofilm architecture of sixty opportunistic pathogens deciphered using a high throughput CLSM method. J Microbiol Methods 82(1):64–70

    Article  CAS  PubMed  Google Scholar 

  69. Dige I, Schlafer S, Nyvad B (2012) Difference in initial dental biofilm accumulation between night and day. Acta Odontol Scand 70(6):441–447

    Article  PubMed  Google Scholar 

  70. Lupini G, Proia L, Di Maio M, Amalfitano S, Fazi S (2011) CARD-FISH and confocal laser scanner microscopy to assess successional changes of the bacterial community in freshwater biofilms. J Microbiol Methods 86(2):248–251

    Article  PubMed  Google Scholar 

  71. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Mikrosk Anat 9:413–418

    Article  Google Scholar 

  72. Rodenacker K, Brühl A, Hausner M, Kühn M, Liebscher V, Wagner M, Wuertz S (2000) Quantification of biofilms in multi-spectral digital volumes from confocal laser scanning microscopes. Image Anal Stereol 19:151–156

    Article  CAS  Google Scholar 

  73. Reed H (1999) Stereological estimation of covariance using linear dipole probes. J Microsc 195(2):96–103

    Article  CAS  PubMed  Google Scholar 

  74. Daims H, Lücker S, Wagner M (2006) Daime, a novel image analysis program for microbial ecology and biofilm research. Environ Microbiol 8(2):200–213

    Article  CAS  PubMed  Google Scholar 

  75. Barker WW, Welch SA, Chu S, Banfield JF (1998) Experimental observations of the effects of bacteria on aluminiosilicate weathering. Am Mineral 83:1551–1563

    Article  CAS  Google Scholar 

  76. de los Rios A, Wierzchos J, Sancho LG, Ascaso C (2003) Acid microenvironments in microbial biofilms of Antarctic endolithic microecosystems. Environ Microbiol 5(4):231–237

    Article  PubMed  Google Scholar 

  77. Hidalgo G, Burns A, Herz E, Hay AG, Houston PL, Wiesner U, Lion LW (2009) Functional tomographic fluorescence imaging of pH microenvironments in microbial biofilms by use of silica nanoparticle sensors. Appl Environ Microbiol 75(23):7426–7435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Acosta MA, Velasquez M, Williams K, Ross JM, Leach JB (2012) Fluorescent silica particles for monitoring oxygen levels in three-dimensional heterogeneous cellular structures. Biotechnol Bioeng 109(10):2663–2670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vroom JM, De Grauw KJ, Gerritsen HC, Bradshaw DJ, Marsh PD, Watson GK, Birmingham JJ, Allison C (1999) Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy. Appl Environ Microbiol 65:3502–3511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Franks AE, Nevin KP, Jia H, Izallalen M, Woodard TL, Lovley DR (2009) Novel strategy for three dimensional real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm. Energy Environ Sci 2(1):113–119

    Article  CAS  Google Scholar 

  81. Hunter RC, Beveridge TJ (2005) Application of a pH-sensitive fluoroprobe (C-SNARF-4) for pH microenvironment analysis in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 71(5):2501–2510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Larsson D, Larsson B, Lundgren T, Sundell K (1999) The effect of pH and temperature on the dissociation constant for fura-2 and their effects on [Ca(2+)](i) in enterocytes from a poikilothermic animal, Atlantic cod (Gadus morhua). Anal Biochem 273(1):60–65

    Article  CAS  PubMed  Google Scholar 

  83. Oliver AE, Baker GA, Fugate RD, Tablin F, Crowe JH (2000) Effects of temperature on calcium-sensitive fluorescent probes. Biophys J 78(4):2116–2126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shabala L, McMeekin T, Budde BB, Siegumfeldt H (2006) Listeria innocua and lactobacillus delbrueckii subsp. bulgaricus employ different strategies to cope with acid stress. Int J Food Microbiol 110(1):1–7

    Article  CAS  PubMed  Google Scholar 

  85. Mohsin M, Ahmad A, Iqbal M (2015) FRET-based genetically-encoded sensors for quantitative monitoring of metabolites. Biotechnol Lett 37(10):1919–1928

    Article  CAS  PubMed  Google Scholar 

  86. Shrestha D, Jenei A, Nagy P, Vereb G, Szöllősi J (2015) Understanding FRET as a research tool for cellular studies. Int J Mol Sci 16(4):6718–6756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Christen M, Kulasekara HD, Christen B, Kulasekara BR, Hoffman LR, Miller SI (2010) Asymmetrical distribution of the second messenger c-di-GMP upon bacterial cell division. Science (New York, NY) 328(5983):1295–1297

    Article  CAS  Google Scholar 

  88. Mills E, Petersen E, Kulasekara BR, Miller SI (2015) A direct screen for c-di-GMP modulators reveals a Salmonella typhimurium periplasmic L-arginine-sensing pathway. Sci Signal 8(380):ra57

    Article  PubMed  CAS  Google Scholar 

  89. Kiedrowski MR, Crosby HA, Hernandez FJ, Malone CL, McNamara JO, Horswill AR (2014) Staphylococcus aureus Nuc2 is a functional, surface-attached extracellular nuclease. PLoS One 9(4):e95574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Stoodley P, deBeer D, Lewandowski Z (1994) Liquid flow in biofilm systems. Appl Environ Microbiol 60(8):2711–2716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kuehn M, Mehl M, Hausner M, Bungartz HJ, Wuertz S (2001) Time-resolved study of biofilm architecture and transport processes using experimental and simulation techniques: the role of EPS. Water Sci Technol 43(6):143–151

    Article  CAS  PubMed  Google Scholar 

  92. Birjiniuk A, Billings N, Nance E, Hanes J, Ribbeck K, Doyle PS (2014) Single particle tracking reveals spatial and dynamic organization of the E. coli biofilm matrix. New J Phys 16(8):085014

    Article  PubMed  PubMed Central  Google Scholar 

  93. Forier K, Messiaen A-S, Raemdonck K, Deschout H, Rejman J, de Baets F, Nelis H, Smedt D, Stefaan C, Demeester J, Coenye T, Braeckmans K (2013) Transport of nanoparticles in cystic fibrosis sputum and bacterial biofilms by single-particle tracking microscopy. Nanomedicine (Lond) 8(6):935–949

    Article  CAS  Google Scholar 

  94. Stewart PS, Davison WM, Steenbergen JN (2009) Daptomycin rapidly penetrates a Staphylococcus epidermidis biofilm. Antimicrob Agents Chemother 53(8):3505–3507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dutta, B., Nag, M., Lahiri, D., Ray, R.R. (2021). Analysis of Biofilm Matrix by Multiplex Fluorescence In Situ Hybridization (M-FISH) and Confocal Laser Scanning Microscopy (CLSM) During Nosocomial Infections. In: Nag, M., Lahiri, D. (eds) Analytical Methodologies for Biofilm Research. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1378-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1378-8_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-1377-1

  • Online ISBN: 978-1-0716-1378-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics