Skip to main content

Biofilm Formation and Pathogenesis

  • Protocol
  • First Online:
Analytical Methodologies for Biofilm Research

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Microbial biofilms are compact surface-attached communities that are usually formed of mixed species wherein microbes thrive together and compete for limited resources. Bacteria growing in biofilms are highly tolerant to antibiotics and recalcitrant to host immune system thus act as an important virulence factor playing a crucial role in infection persistence and pathogenesis. Bacterial biofilms have long been perceived as cause of chronic infections and diseases in humans. However, host–biofilm interactions are not well understood and thus, limiting our knowledge on how biofilms participate in disease pathogenesis. In this chapter, we will discuss underlying molecular mechanisms of biofilm formation and different interactions taking place during establishment of biofilms. Moreover, we will highlight in detail the role of biofilms as a virulence component and its contribution to the disease pathogenesis, focusing on important human infectious diseases and relevant animal models studying the fundamentals of pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EPS:

Exopolysaccharides

ECM:

Extracellular matrix

MSCRAMMs:

Microbial surface components recognizing adhesive matrix molecule

PIA:

Polysaccharide intercellular adhesin

AHL:

Acyl-homoserine lactone

AI-2:

Autoinducer-2

HSL:

Homoserine lactone

References

  1. Flemming H-C et al (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563

    Article  CAS  PubMed  Google Scholar 

  2. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  CAS  PubMed  Google Scholar 

  3. Geesey GG, Richardson WT, Yeomans HG et al (1977) Microscopic examination of natural sessile bacterial populations from an alpine stream. Can J Microbiol 23:1733–1736

    Article  CAS  PubMed  Google Scholar 

  4. Mortensen KP, Conley SN (1994) Film fill fouling in counterflow cooling towers: mechanisms and design. CTI J 15:10–25

    Google Scholar 

  5. Väisänen OM, Weber A, Bennasar A et al (1998) Microbial communities of printing paper machines. J Appl Microbiol 84(6):1069–1084

    Article  PubMed  Google Scholar 

  6. Angenent LT, Kelley ST, St Amand A et al (2005) Molecular identification of potential pathogens in water and air of a hospital therapy pool. Proc Natl Acad Sci U S A 102(13):4860–4865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lebeaux D, Chauhan A, Rendueles O, Beloin C (2013) From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens 2:288–356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Stoodley P, Sauer K, Davies DG, Costerton JW (2002a) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209

    Article  CAS  PubMed  Google Scholar 

  9. Stoodley P, Cargo R, Rupp CJ et al (2002b) Biofilm material properties as related to shear-induced deformation and detachment phenomena. J Ind Microbiol Biotechnol 29:361–367

    Article  CAS  PubMed  Google Scholar 

  10. vanLoosdrecht MC, Heijnen JJ, Eberl H et al (2002a) Mathematical modelling of biofilm structures. Antonie Van Leeuwenhoek 81(1-4):245–256

    Article  CAS  Google Scholar 

  11. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890

    Article  PubMed  PubMed Central  Google Scholar 

  12. Götz F (2002) Staphylococcus and biofilms. Mol Microbiol 43(6):1367–1378

    Article  PubMed  Google Scholar 

  13. Lasa I, Penadés JR (2006) Bap: a family of surface proteins involved in biofilm formation. Res Microbiol 157(2):99–107

    Article  CAS  PubMed  Google Scholar 

  14. Pratt LA, Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30(2):285–293

    Article  CAS  PubMed  Google Scholar 

  15. Geesey GG (2001) Bacterial behavior at surfaces. Curr Opin Microbiol 4(3):296–300

    Article  CAS  PubMed  Google Scholar 

  16. O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304

    Article  PubMed  Google Scholar 

  17. Ventre I, Goodman AL, Vallet-Gely I et al (2006) Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. PNAS 103(1):171–176

    Article  CAS  PubMed  Google Scholar 

  18. Kearns DB, Chu F, Branda SS et al (2005) A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 55:739–749

    Article  CAS  PubMed  Google Scholar 

  19. Branda SS, Chu F, Kearns DB et al (2006) A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 59:1229–1238

    Article  CAS  PubMed  Google Scholar 

  20. Zobell CE (1943) The effect of solid surfaces upon bacterial activity. J Bacteriol 46:39–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Van Loosdrecht MC, Lyklema J, Norde W, Zehnder AJ (1990) Influence of interfaces on microbial activity. Microbiol Rev 54:75–87

    Article  PubMed  PubMed Central  Google Scholar 

  22. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Olsen A, Jonsson A, Normark S (1989) Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338(6217):652–655

    Article  CAS  PubMed  Google Scholar 

  24. Ben Nasr A, Olsén U, Sjöbring W, Müller-Esterl L (1996) Assembly of human contact phase proteins and release of bradykinin at the surface of curli-expressing Escherichia coli. Mol Microbiol 20(5):927–935

    Article  CAS  PubMed  Google Scholar 

  25. Reisner A, Haagensen JAJ, Schembri MA et al (2003) Development and maturation of Escherichia coli K-12 biofilms. Mol Microbiol 48(4):933–946

    Article  CAS  PubMed  Google Scholar 

  26. Fey PD, Olson ME (2010) Current concepts in biofilm formation of Staphylococcus epidermidis. Future Microbiol 5:917–933

    Article  CAS  PubMed  Google Scholar 

  27. Romeo T (2008) Bacterial biofilms. Preface. Curr Top Microbiol Immunol 322:v

    PubMed  Google Scholar 

  28. Ulett GC, Valle J, Beloin C et al (2007) Functional analysis of antigen 43 in uropathogenic Escherichia coli reveals a role in long-term persistence in the urinary tract. Infect Immun 75(7):3233–3244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Anderson GG, Palermo JJ, Schilling JD et al (2003) Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301:105–107

    Article  CAS  PubMed  Google Scholar 

  30. Cucarella C, Solano C, Valle J et al (2001) Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183:2888–2896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ghannoum M, O’Toole GA (2001) Microbial biofilms. ASM Press, Washington DC

    Google Scholar 

  32. Fletcher M, Loeb GI (1979) The influence of substratum characteristics on the attachment of a marine Pseudomonas to solid surfaces. Appl Environ Microbiol 37:67–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. James GA, Beaudette L, Costerton JW (1995) Interspecies bacterial interactions in biofilms. J Ind Microbiol 15:257–262

    Article  CAS  Google Scholar 

  34. Hofstad T (1992) Virulence factors in anaerobic bacteria. Eur J Clin Microbiol Infect Dis 11:1044–1048

    Article  CAS  PubMed  Google Scholar 

  35. Rabin N et al (2015) Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem 7(4):493–512. https://doi.org/10.4155/fmc.15.6

    Article  CAS  PubMed  Google Scholar 

  36. Pacheco AR, Sperandio V (2009) Inter-kingdom signaling: chemical language between bacteria and host. Curr Opin Microbiol 12(2):192–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Long T, Tu KC, Wang Y et al (2009) Quantifying the integration of quorum-sensing signals with single-cell resolution. PLoS Biol 7(3):e1000068

    Article  PubMed Central  CAS  Google Scholar 

  38. O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    Article  PubMed  Google Scholar 

  39. Sakuragi Y, Kolter R (2007) Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. J Bacteriol 189(14):5383–5386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McGowan S et al (1995) Carbapenem antibiotic production in Erwinia carotovorais regulated by CarR, a homologue of the LuxR transcriptional activator. Microbiology 141:541–550

    Article  CAS  PubMed  Google Scholar 

  41. Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Boles BR, Thoendel M, Singh PK (2004) Self-generated diversity produces “insurance effects” in biofilm communities. Proc Natl Acad Sci U S A 101:16630–16635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kerr B, Riley MA, Feldman MW, Bohannan BJ (2002) Local dispersal promotes biodiversity in a real-life game of rock-paper scissors. Nature 418:171–174

    Article  CAS  PubMed  Google Scholar 

  44. Li YH, Hanna MN, Svensater G et al (2001) Cell density modulates acid adaptation in Streptococcus mutans: implications for survival in biofilms. J Bacteriol 183:6875–6884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Butler MT, Wang Q, Harshey RM (2010) Cell density and mobility protect swarming bacteria against antibiotics. Proc Natl Acad Sci U S A 107:3776–3781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Burmølle M, Ren D, Bjarnsholt T, Sørensen SJ (2014) Interactions in multispecies biofilms: do they actually matter? Trends Microbiol 22:84–91

    Article  PubMed  CAS  Google Scholar 

  47. Elias S, Banin E (2012) Multi-species biofilms: living with friendly neighbors. FEMS Microbiol Rev 36:990–1004

    Article  CAS  PubMed  Google Scholar 

  48. Foster KR, Bell T (2012) Competition, not cooperation, dominates interactions among culturable microbial species. Curr Biol 22:1845–1850

    Article  CAS  PubMed  Google Scholar 

  49. Whittaker CJ, Klier CM, Kolenbrander PE (1996) Mechanisms of adhesion by oral bacteria. Annu Rev Microbiol 50:513–552

    Article  CAS  PubMed  Google Scholar 

  50. Poltak SR, Cooper VS (2011) Ecological succession in long-term experimentally evolved biofilms produces synergistic communities. ISME J 5:369–378

    Article  PubMed  Google Scholar 

  51. Ramsey MM, Rumbaugh KP, Whiteley M (2011) Metabolite crossfeeding enhances virulence in a model polymicrobial infection. PLoS Pathog 7:e1002012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Burmolle M, Webb JS, Rao D et al (2006) Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol 72:3916–3923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Whiteley M, Ott JR, Weaver EA et al (2001) Effects of community composition and growth rate on aquifer biofilm bacteria and their susceptibility to betadine disinfection. Environ Microbiol 3:43–52

    Article  CAS  PubMed  Google Scholar 

  54. Sutherland I (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    Article  CAS  PubMed  Google Scholar 

  55. Manhes P, Velicer GJ (2011) Experimental evolution of selfish policing in social bacteria. Proc Natl Acad Sci U S A 108:8357–8362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hamilton WD (1964) The genetical evolution of social behavior. J Theor Biol 7:1–52

    Article  CAS  PubMed  Google Scholar 

  57. Strassmann JE, Gilbert OM, Queller DC (2011) Kin discrimination and cooperation in microbes. Annu Rev Microbiol 65:349–367

    Article  CAS  PubMed  Google Scholar 

  58. Julou T, Mora T, Guillon L et al (2013) Cell-cell contacts confine public goods diffusion inside Pseudomonas aeruginosa clonal microcolonies. Proc Natl Acad Sci U S A 110(31):12577–12582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Drescher K, Nadell CD, Stone HA, Wingreen NS, Bassler BL (2014) Solutions to the public goods dilemma in bacterial biofilms. Curr Biol 24:50–55

    Article  CAS  PubMed  Google Scholar 

  60. Griffin AS, West SA, Buckling A (2004) Cooperation and competition in pathogenic bacteria. Nature 430:1024–1027

    Article  CAS  PubMed  Google Scholar 

  61. West SA, Pen I, Griffin AS (2002) Conflict and cooperation: cooperation and competition between relatives. Science 296:72–75

    Article  CAS  PubMed  Google Scholar 

  62. Case TJ, Gilpin ME (1974) Interference competition and niche theory. Proc Natl Acad Sci U S A 71:3073–3077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yamamoto K, Haruta S, Kato S et al (2010) Determinative factors of competitive advantage between aerobic bacteria for niches at the air-liquid interface. Microbes Environ 25:317–320

    Article  PubMed  Google Scholar 

  64. Bradshawa DJ, Marsha PD, Hodgson RJ et al (2002) Effects of glucose and fluoride on competition and metabolism within in vitro dental bacterial communities and biofilms. Caries Res 36:81–86

    Article  Google Scholar 

  65. Oehmen A, Lemos PC, Carvalho G et al (2007) Advances in enhanced biological phosphorus removal: from micro to macro scale. Water Res 41:2271–2300

    Article  CAS  PubMed  Google Scholar 

  66. Weaver VB, Kolter R (2004) Burkholderiaspp. alter Pseudomonas aeruginosaphysiology through iron sequestration. J Bacteriol 186:2376–2384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Eberl HJ, Collinson S (2009) A modeling and simulation study of siderophore mediated antagonism in dual-species biofilms. Theor Biol Med Model 6:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Graver MA, Wade JJ (2011) The role of acidification in the inhibition of Neisseria gonorrhoeaeby vaginal lactobacilli during anaerobic growth. Ann Clin Microbiol Antimicrob 10:8

    Article  PubMed  PubMed Central  Google Scholar 

  69. Létoffé S, Audrain B, Bernier SP et al (2014) Aerial exposure to the bacterial volatile compound trimethylamine modifies antibiotic resistance of physically separated bacteria by raising culture medium pH. MBio 5:e00944

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Pericone CD, Overweg K, Hermans PW et al (2000) Inhibitory and bactericidal effects of hydrogen peroxide production by Streptococcus pneumoniaeon other inhabitants of the upper respiratory tract. Infect Immun 68:3990–3997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kreth J, Zhang Y, Herzberg MC (2008) Streptococcal antagonism in oral biofilms: Streptococcus sanguinisand Streptococcus gordoniiinterference with Streptococcus mutans. J Bacteriol 190:4632–4640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gillor O, Kirkup BC, Riley MA (2004) Colicins and microcins: the next generation antimicrobials. Adv Appl Microbiol 54:129–146

    Article  CAS  PubMed  Google Scholar 

  73. Cascales E, Buchanan SK, Duche D et al (2007) Colicin biology. Microbiol Mol Biol Rev 71:158–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Aoki SK, Pamma R, Hernday AD et al (2005) Contact-dependent inhibition of growth in Escherichia coli. Science 309:1245–1248

    Article  CAS  PubMed  Google Scholar 

  75. Kapitein N, Mogk A (2013) Deadly syringes: type VI secretion system activities in pathogenicity and interbacterial competition. Curr Opin Microbiol 16:52–58

    Article  PubMed  Google Scholar 

  76. Pukatzki S, Ma AT, Sturtevant D et al (2006) Identification of a conserved bacterial protein secretion system in VIBRIO cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A 103:1528–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ho BT, Dong TG, Mekalanos JJ (2014) A view to a kill: the bacterial type VI secretion system. Cell Host Microbe 15:9–21

    Article  CAS  PubMed  Google Scholar 

  78. Schwarz S, West TE, Boyer F et al (2010) Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog 6:e1001068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Rendueles O, Ghigo JM (2012) Multi-species biofilms: how to avoid unfriendly neighbors. FEMS Microbiol Rev 36:972–989

    Article  CAS  PubMed  Google Scholar 

  80. Banat IM, Franzetti A, Gandolfi I et al (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 187:427–444

    Article  CAS  Google Scholar 

  81. Rendueles O, Travier L, Latour-Lambert P et al (2011) Screening of Escherichia coli species biodiversity reveals new biofilm-associated antiadhesion polysaccharides. MBio 2:e00043–e00011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Kim Y, Oh S, Kim SH (2009) Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157:H7. Biochem Biophys Res Commun 379:324–329

    Article  CAS  PubMed  Google Scholar 

  83. Iwase T, Uehara Y, Shinji H et al (2010) Staphylococcus epidermidisEsp inhibits Staphylococcus aureusbiofilm formation and nasal colonization. Nature 465:346–349

    Article  CAS  PubMed  Google Scholar 

  84. Sugimoto S, Iwamoto T, Takada K et al (2013) Staphylococcus epidermidisEsp degrades specific proteins associated with Staphylococcus aureusbiofilm formation and host-pathogen interaction. J Bacteriol 195:1645–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ogawa A, Furukawa S, Fujita S et al (2011) Inhibition of Streptococcus mutans biofilm formation by Streptococcus salivarius FruA. Appl Environ Microbiol 177:1572–1580

    Article  CAS  Google Scholar 

  86. Bassler BL, Losick R (2006) Bacterially speaking. Cell 125:237–246

    Article  CAS  PubMed  Google Scholar 

  87. Fuqua C, Greenberg EP (2002) Listening in on bacteria: acylhomoserine lactone signaling. Nat Rev Mol Cell Biol 3:685–695

    Article  CAS  PubMed  Google Scholar 

  88. Augustine N, Kumar P, Thomas S (2010) Inhibition of vibrio choleraebiofilm by AiiA enzyme produced from Bacillus spp. Arch Microbiol 192:1019–1022

    Article  CAS  PubMed  Google Scholar 

  89. Chu W, Zere TR, Weber MM et al (2012) Indole production promotes Escherichia coli mixed-culture growth with Pseudomonas aeruginosaby inhibiting quorum signaling. Appl Environ Microbiol 78:411–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Davies DG, Marques CN (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191:1393–1403

    Article  CAS  PubMed  Google Scholar 

  91. Boyle KE, Heilmann S, van Ditmarsch D et al (2013) Exploiting social evolution in biofilms. Curr Opin Microbiol 16:207–212

    Article  PubMed  PubMed Central  Google Scholar 

  92. Reid G, Howard J, Gan BS (2001) Can bacterial interference prevent infection? Trends Microbiol 9:424–428

    Article  CAS  PubMed  Google Scholar 

  93. Buffie CG, Pamer EG (2013) Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol 13:790–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lloyd-Price J et al (2017) Strains, functions and dynamics in the expanded human microbiome project. Nature 550:61–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Young VB (2017) The role of the microbiome in human health and disease: an introduction for clinicians. BMJ 356:j831

    Article  PubMed  Google Scholar 

  96. Hall-Stoodley L, Costerton JW et al (2004) Bacterial biofilms: From the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    Article  CAS  PubMed  Google Scholar 

  97. Dang AT, Marsland BJ (2019) Microbes, metabolites, and the gut–lung axis. Mucosal Immunol 12:843–850

    Article  CAS  PubMed  Google Scholar 

  98. Tytgat HLP, Nobrega FL, Oost J et al (2019) de bowel biofilms: tipping points between a healthy and compromised gut? Trends Microbiol 27:17–25

    Article  CAS  PubMed  Google Scholar 

  99. DeVos WM (2015) Microbial biofilms and the human intestinal microbiome. NPJ Biofilms Microbiomes 1:15005

    Article  CAS  Google Scholar 

  100. Dongari-Bagtzoglou A (2008) Mucosal biofilms: challenges and future directions. Expert Rev Anti-Infect Ther 6:141–144

    Article  CAS  PubMed  Google Scholar 

  101. Costerton JW et al (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  CAS  PubMed  Google Scholar 

  102. Jamal M et al (2018) Bacterial biofilm and associated infections. J Chin Med Assoc 81:7–11

    Article  PubMed  Google Scholar 

  103. Cho KH, Caparon MG (2005) Patterns of virulence gene expression differ between biofilm and tissue communities of Streptococcus pyogenes. Mol Microbiol 57:1545–1556

    Article  CAS  PubMed  Google Scholar 

  104. Hall-Stoodley L, Hu FZ, Gieseke A et al (2006) Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA 296:202–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bouchet V, Hood DW, Li J et al (2003) Host-derived sialic acid is incorporated into Haemophilus influenzae lipopolysaccharide and is a major virulence factor in experimental otitis media. Proc Natl Acad Sci U S A 100(15):8898–8903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ehrlich GD, Veeh R, Wang X et al (2002) Mucosal biofilm formation on middle-ear mucosa in the chinchilla model of otitis media. JAMA 287:1710–1715

    Article  PubMed  Google Scholar 

  107. Jurcisek J, Greiner L, Watanabe et al (2005) Role of sialicacid and complex carbohydrate biosynthesis in biofilm formation by nontypeableHaemophilusinfluenzae in the chinchilla middle ear. Infect Immun 73(6):3210–3218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Briles DE, Hollingshead SK, Nabors GS et al (2000) The potential for using protein vaccines to protect against otitis media caused by Streptococcus pneumoniae. Vaccine 19(Suppl 1):S87–S95

    Article  CAS  PubMed  Google Scholar 

  109. Holmes AR, McNab R, Millsap KW et al (2001) The pavA gene of Streptococcus pneumoniae encodes a fibronectin-binding protein that is essential for virulence. Mol Microbiol 41:1395–1408

    Article  CAS  PubMed  Google Scholar 

  110. Beghetto E, Gargano N, Ricci S et al (2006) Discovery of novel Streptococcus pneumonia eantigens by screening a whole-genome lambda-display library. FEMS Microbiol Lett 262(1):14–21

    Article  CAS  PubMed  Google Scholar 

  111. Byrd MS, Pang B, Hong W, Waligora et al (2011) Direct evaluation of Pseudomonas aeruginosa biofilm mediators in a chronic infection model. Infect Immun 79(8):3087–3095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Roberts AL, Connolly KL, Doern CD et al (2010) Loss of the group A Streptococcus regulator Srv decreases biofilm formation in vivo in an otitis media model of infection. Infect Immun 78(11):4800–4808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kolenbrander PE (2011) Multispecies communities: interspecies interactions influence growth on saliva as sole nutritional source. Int J Oral Sci 3(2):49–54

    Article  PubMed  PubMed Central  Google Scholar 

  114. Groessner-Schreiber B, Hannig M, Duck A et al (2004) Do different implant surfaces exposed in the oral cavity of humans show different biofilm compositions and activities? Eur J Oral Sci 112(6):516–522

    Article  PubMed  Google Scholar 

  115. Dai T, Kharkwal GB, Tanaka M et al (2011) Animal models of external traumatic wound infections. Virulence 2:296–315

    Article  PubMed  PubMed Central  Google Scholar 

  116. Quivey RG Jr, Kuhnert WL, Hahn K (2000) Adaptation of oral streptococci to low pH. Adv Microb Physiol 42:239–274

    Article  CAS  PubMed  Google Scholar 

  117. Fitzgerald RJ, Keyes PH (1960) Demonstration of the etiologic role of streptococci in experimental caries in the hamster. J Am Dent Assoc 61:9–19

    Article  CAS  PubMed  Google Scholar 

  118. Keyes PH (1960) The infectious and transmissible nature of experimental dental caries. Findings and implications. Arch Oral Biol 1:304–320

    Article  CAS  PubMed  Google Scholar 

  119. Tanzer JM (1979) Essential dependence of smooth surface caries on, and augmentation of fissure caries by, sucrose and Streptococcus mutans infection. Infect Immun 25(2):526–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bowen WH, Schilling K, Giertsen E, Pearson S et al (1991) Role of a cell surface-associated protein in adherence and dental caries. Infect Immun 59:4606–4609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Catalan MA, Scott-Anne K, Klein MI et al (2011) Elevated incidence of dental caries in a mouse model of cystic fibrosis. PLoS One 6:e16549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. van Heeckeren AM, Schluchter MD, Drumm ML et al (2004) Role of Cftr genotype in the response to chronic Pseudomonas aeruginosalung infection in mice. Am J Physiol Lung Cell Mol Physiol 287(5):L944–L952

    Article  PubMed  CAS  Google Scholar 

  123. Calum H, Moser C, Jensen PO et al (2009) Thermal injury induces impaired function in polymorphonuclear neutrophil granulocytes and reduced control of burn wound infection. Clin Exp Immunol 156:102–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cohen TS, Prince A (2012) Cystic fibrosis: a mucosal immunodeficiency syndrome. Nat Med 18:509–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hoiby N, Bjarnsholt T, Givskov M et al (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332

    Article  PubMed  CAS  Google Scholar 

  126. Yang L, Hengzhuang W, Wu H et al (2012) Polysaccharides serve as scaffold of biofilms formed by mucoid Pseudomonas aeruginosa. FEMS Immunol Med Microbiol 65:366–376

    Article  CAS  PubMed  Google Scholar 

  127. Xiong YQ, Willard J, Yeaman MR et al (2006) Regulation of Staphylococcus aureus alpha-toxin gene (hla) expression by agr, sarA, and sae in vitro and in experimental infective endocarditis. J Infect Dis 194:1267–1275

    Article  CAS  PubMed  Google Scholar 

  128. James GA, Swogger E, Wolcott R et al (2008) Biofilms in chronic wounds. Wound Repair Regen 16:37–44

    Article  PubMed  Google Scholar 

  129. Thomson CH (2011) Biofilms: do they affect wound healing? Int Wound J 8:63–67

    Article  PubMed  Google Scholar 

  130. Seth AK, Geringer MR, Hong SJ et al (2012) In vivo modeling of biofilm-infected wounds: a review. J Surg Res 178:330–338

    Article  PubMed  Google Scholar 

  131. Davis SC, Ricotti C, Cazzaniga A et al (2008) Microscopic and physiologic evidence for biofilm-associated wound colonization in vivo. Wound Repair Regen 16:23–29

    Article  PubMed  Google Scholar 

  132. Simonetti O, Cirioni O, Ghiselli R et al (2008) RNAIII-inhibiting peptide enhances healing of wounds infected with methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 52(6):2205–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lee FD, Kraszewski A, Gordon J et al (1971) Intestinal spirochaetosis. Gut 12:126–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Macfarlane S, Dillon JF (2007) Microbial biofilms in the human gastrointestinal tract. J Appl Microbiol 102:1187–1196

    Article  CAS  PubMed  Google Scholar 

  135. Palestrant D, Holzknecht ZE, Collins BH et al (2004) Microbial biofilms in the gut: visualization by electron microscopy and by acridine orange staining. Ultrastruct Pathol 28:23–27

    Article  PubMed  Google Scholar 

  136. Swidsinski A, Weber J, Loening-Baucke V et al (2005) Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol 43:3380–3389

    Article  PubMed  PubMed Central  Google Scholar 

  137. Sjoerd van der Post KS, Jabbar GB et al (2019) Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut 68:2142–2151

    Article  PubMed  CAS  Google Scholar 

  138. Ellerman M, Sartor RB (2018) Intestinal bacterial biofilms modulate mucosal immune responses. J Immunol Sci 2:13–18

    Article  Google Scholar 

  139. Monteiro C et al (2009) Characterization of cellulose production in Escherichia coli Nissle 1917 and its biological consequences. Environ Microbiol 11:1105–1116

    Article  CAS  PubMed  Google Scholar 

  140. Leatham MP, Stevenson SJ, Gauger EJ et al (2005) Mouse intestine selects no nmotile flhDC mutants of Escherichia coli MG1655 with increased colonizing ability and bette rutilization of carbon sources. Infect Immun 73(12):8039–8049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Leatham-Jensen MP, Frimodt-Møller J, Adediran J et al (2012) The streptomycin-treated mouse intestine selects Escherichia coli envZ missense mutants that interact with dense and diverse intestinal microbiota. Infect Immun 80(5):1716–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Plummer P, Sahin O, Burrough E et al (2012) Critical role of LuxS in the virulence of Campylobacter jejuni in a guinea pig model of abortion. Infect Immun 80(2):585–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Klein RD, Hultgren SJ (2020) Urinary tract infections: microbial pathogenesis, host-pathogen interactions and new treatment strategies. Nat Rev Microbiol 18(4):211–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Foxman B (2017) Urinary tract infection syndromes: occurrence, recurrence, bacteriology, riskfactors, and diseaseburden. Infect Dis Clin N Am 28:1–13

    Article  Google Scholar 

  145. Hannan TJ, Totsika M, Mansfield KJ et al (2012) Host-pathogen checkpoints and population bottlenecks in persistent and intracellular uropathogenic Escherichia coli bladder infection. FEMS Microbiol Rev 36:616–648

    Article  CAS  PubMed  Google Scholar 

  146. Ronald A (2002) The etiology of urinary tract infection: traditional and emerging pathogens. Am J Med 113(Suppl 1A):14S–19S

    Article  PubMed  Google Scholar 

  147. Rosen DA, Pinkner JS, Walker JN et al (2008) Molecular variations in Klebsiellapneumoniae and Escherichia coli FimH affect function and pathogenesis in the urinary tract. Infect Immun 76(7):3346–3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Blango MG, Mulvey MA (2010) Persistence of uropathogenic Escherichia coli in the face of multiple antibiotics. Antimicrob Agents Chemother 54:1855–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hultgren SJ, Porter TN, Schaeffer AJ et al (1985) Role of type 1 pili and effects of phase variation on lower urinary tract infections produced by Escherichia coli. Infect Immun 50:370–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Langermann S, Palaszynski S, Barnhart M et al (1997) Prevention of mucosal Escherichia coli infection by FimH-adhesin-based systemic vaccination. Science 276(5312):607–611

    Article  CAS  PubMed  Google Scholar 

  151. Poggio TV, La Torre JL, Scodeller EA (2006) Intranasal immunization with a recombinant truncated FimH adhesin adjuvanted with CpG oligodeoxynucleotides protects mice against uropathogenic Escherichia coli challenge. Can J Microbiol 52:1093–1102

    Article  CAS  PubMed  Google Scholar 

  152. Wullt B, Bergsten G, Connell H et al (2001) P-fimbriae trigger mucosal responses to Escherichia coli in the human urinary tract. Cell Microbiol 3(4):255–264

    Article  CAS  PubMed  Google Scholar 

  153. Bergsten G, Wullt B, Svanborg C (2005) Escherichia coli, fimbriae, bacterial persistence and host response induction in the human urinary tract. Int J Med Microbiol 295(6-7):487–502

    Article  CAS  PubMed  Google Scholar 

  154. Hadjifrangiskou M, Kostakioti M, Chen SL et al (2011) A central metabolic circuit controlled by QseC in pathogenic Escherichia coli. Mol Microbiol 80:1516–1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Alteri CJ, Smith SN, Mobley HL (2009) Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathog 5:e1000448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Reigstad CS, Hultgren SJ, Gordon JI (2007) Functional genomic studies of uropathogenic Escherichia coli and host urothelial cells when intracellular bacterial communities are assembled. J Biol Chem 282(29):21259–21267

    Article  CAS  PubMed  Google Scholar 

  157. Trune DR, Zheng QY (2009) Mouse models for human otitis media. Brain Res 1277:90–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Rye MS, Wiertsema SP, Scaman ES et al (2011) FBXO11, a regulator of the TGFβ pathway, is associated with severe otitis media in Western Australian children. Genes Immun 12(5):352–359

    Article  CAS  PubMed  Google Scholar 

  159. Bhutta MF (2012) Mouse models of otitis media: strengths and limitations. Otolaryngol Head Neck Surg 147:611–614

    Article  PubMed  Google Scholar 

  160. Zhang Y, Hu Y, Yang B et al (2010) Duckweed (Lemna minor) as a model plant system for the study of human microbial pathogenesis. PLoS One 5:e13527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Lee SF, Andrian E, Rowland E, Marquez IC (2009) Immune response and alveolar bone resorption in a mouse model of Treponema denticola infection. Infect Immun 77:694–698

    Article  CAS  PubMed  Google Scholar 

  162. Bainbridge B, Verma RK, Eastman C et al (2010) Role of Porphyromonas gingivalis phosphoserine phosphatase enzyme SerB in inflammation, immune response, and induction of alveolar bone resorption in rats. Infect Immun 78:4560–4569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Feuille F, Ebersole JL, Kesavalu L et al (1996) Mixed infection with Porphyromonasgingivalis and Fusobacteriumnucleatum in a murine lesion model: potential synergistic effects on virulence. Infect Immun 64(6):2094–2100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Polak D, Wilensky A, Shapira L et al (2009) Mouse model of experimental periodontitis induced by Porphyromonas gingivalis/Fusobacterium nucleatum infection: bone loss and host response. J Clin Periodontol 36:406–410

    Article  PubMed  Google Scholar 

  165. Yin L, Dale BA (2007) Activation of protective responses in oral epithelial cells by Fusobacteriumnucleatum and human beta-defensin-2. J Med Microbiol 56(Pt 7):976–987

    Article  CAS  PubMed  Google Scholar 

  166. Jensen PØ, Lykkesfeldt J, Bjarnsholt T et al (2012) Poor antioxidant status exacerbates oxidative stress and inflammatory response to Pseudomonas aeruginosa lung infection in guinea pigs. Basic Clin Pharmacol Toxicol 110(4):353–358

    Article  CAS  PubMed  Google Scholar 

  167. Heeckeren A, Walenga R, Konstan MW et al (1997) Excessive inflammatory response of cystic fibrosis mice to bronchopulmonary infection with Pseudomonas aeruginosa. J Clin Invest 100(11):2810–2815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Moser C et al (2017) Biofilms and host response–helpful or harmful. APMIS 125:320–338

    Article  PubMed  Google Scholar 

  169. Mauch RM et al (2017) Secretory IgA response against Pseudomonas aeruginosa in the upper airways and the link with chronic lung infection in cystic fibrosis. Pathog Dis 75:10–13

    Article  CAS  Google Scholar 

  170. González JF, Hahn MM, Gunn JS (2018) Chronic biofilm-based infections: skewing of the immune response. Pathog Dis 76:1–7

    Article  CAS  Google Scholar 

  171. Moser C et al (2000) The immune response to chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is predominantly of the Th2 tvpe. APMIS 108:329–335

    Article  CAS  PubMed  Google Scholar 

  172. Yonker LM, Cigana C, Hurley BP et al (2015) Host-pathogen interplay in the respiratory environment of cystic fibrosis. J Cyst Fibros 14(4):431–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Moser C et al (2005) Serum concentrations of GM-CSF and G-CSF correlate with the Th1/Th2 cytokine response in cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. APMIS 113:400–409

    Article  CAS  PubMed  Google Scholar 

  174. Aanaes K et al (2013) Secretory IgA as a diagnostic tool for Pseudomonas aeruginosa respiratory colonization. J Cyst Fibros 12:81–87

    Article  CAS  PubMed  Google Scholar 

  175. Su YC, Jalalvand F, Thegerström J, Riesbeck K (2018) The interplay between immune response and bacterial infection in COPD: focus upon non-typeable Haemophilus influenzae. Front Immunol 9:1–26

    Article  CAS  Google Scholar 

  176. Staples KJ et al (2016) Relationships between mucosal antibodies, non-typeable Haemophilusinfluenzae (NTHi) infection and airway inflammation in COPD. PLoS ONE 11:1–17

    Article  CAS  Google Scholar 

  177. Domingue JC, Drewes JL, Merlo CA et al (2020) Host responses to mucosal biofilms in the lung and gut. Mucosal Immunol 13(3):413–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Abraham SN, Babu JP, Giampapa CS et al (1985) Protection against Escherichia coli-induced urinary tract infections with hybridoma antibodies directed against type 1 fimbriae or complementary D-mannose receptors. Infect Immun 48:625–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wright KJ, Seed PC, Hultgren SJ (2007) Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell Microbiol 9:2230–2241

    Article  CAS  PubMed  Google Scholar 

  180. Fischer H, Lutay N, Ragnarsdottir B et al (2010) Pathogen specific, IRF3-dependent signaling and innate resistance to human kidney infection. PLoS Pathog 6:e1001109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Hannan TJ, Mysorekar IU, Hung CS et al (2010) Early severe inflammatory responses to uropathogenic E. coli predispose to chronic and recurrent urinary tract infection. PLoS Pathog 6(8):e1001042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Hagberg L, Hull R, Hull S et al (1984) Difference in susceptibility to gram-negative urinary tract infection between C3H/HeJ and C3H/HeN mice. Infect Immun 46(3):839–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Svanborg C, Bergsten G, Fischer H et al (2006) Uropathogenic Escherichia coli as a model of host-parasite interaction. Curr Opin Microbiol 9(1):33–39

    Article  CAS  PubMed  Google Scholar 

  184. Ragnarsdottir B, Jonsson K, Urbano A et al (2010) Toll-like receptor 4 promoter polymorphisms: common TLR4 variants may protect against severe urinary tract infection. PLoS One 5:e10734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Sivick KE, Mobley HL (2010) Waging war against uropathogenic Escherichia coli: winning back the urinary tract. Infect Immun 78:568–585

    Article  CAS  PubMed  Google Scholar 

  186. Andersen-Nissen E, Hawn TR, Smith KD et al (2007) Cutting edge: Tlr5-/- mice are more susceptible to Escherichia coli urinary tract infection. J Immunol 178(8):4717–4720

    Article  CAS  PubMed  Google Scholar 

  187. Song J, Abraham SN (2008) TLR-mediated immune responses in the urinary tract. Curr Opin Microbiol 11(1):66–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Hansson S, Hanson E, Hjalmas K et al (1990) Follicular cystitis in girls with untreated asymptomatic or covert bacteriuria. J Urol 143:330–332

    Article  CAS  PubMed  Google Scholar 

  189. Schlager TA, LeGallo R, Innes D et al (2011) B cell infiltration and lymphonodular hyperplasia in bladder submucosa of patients with persistent bacteriuria and recurrent urinary tract infections. J Urol 186:2359–2364

    Article  CAS  PubMed  Google Scholar 

  190. Wang C, Mendonsa GR, Symington JW et al (2012) Atg16L1 deficiency confers protection from uropathogenic Escherichia coli infection in vivo. Proc Natl Acad Sci U S A 109:11008–11013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Darouiche RO (2004) Treatment of infections associated with surgical implants. N Engl J Med 350(14):1422–1429

    Article  CAS  PubMed  Google Scholar 

  192. Sohns JM, Bavendiek U, Ross TL et al (2017) Targeting cardiovascular implant infection: multimodality and molecular imaging. Circ Cardiovasc Imaging 10(12):e005376

    Article  PubMed  Google Scholar 

  193. Kalmeijer MD et al (2000) Nasal carriage of Staphylococcus aureus is a major risk factor for surgical-site infections in orthopedic surgery. Infect Control Hosp Epidemiol 21(5):319–323

    Article  CAS  PubMed  Google Scholar 

  194. Berbari EF, Hanssen AD, Duffy MC et al (1998) Risk factors for prosthetic joint infection: case-control study. Clin Infect Dis 27(5):1247–1254

    Article  CAS  PubMed  Google Scholar 

  195. Pittet D, Tarara D, Wenzel RP (1994) Nosocomial bloodstream infection in critically ill patients. Excess length of stay, extra costs, and attributable mortality. JAMA 271(20):1598–1601

    Article  CAS  PubMed  Google Scholar 

  196. Adair CG, Gorman SP, Feron BM et al (1999) Implications of endotracheal tube biofilm for ventilator-associated pneumonia. Intensive Care Med 25:1072–1076

    Article  CAS  PubMed  Google Scholar 

  197. Inglis TJJ, Tit-Meng L, Mah-Lee N et al (1995) Structural features of tracheal tube biofilm formed during prolonged mechanical ventilation. Chest 108:1049

    Article  CAS  PubMed  Google Scholar 

  198. Frank DN, Wilson SS, St Amand AL et al (2009) Culture-independent microbiological analysis of foley urinary catheter biofilms. PLoS One 4:e7811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Percival SL, Sabbuba NA, Kite P, Stickler DJ (2009) The effect of EDTA instillations on the rate of development of encrustation and biofilms in Foley catheters. Urol Res 37(4):205–209

    Article  CAS  PubMed  Google Scholar 

  200. Macleod SM, Stickler DJ (2007) Species interactions in mixed-community crystalline biofilms on urinary catheters. J Med Microbiol 56:1549–1557

    Article  PubMed  Google Scholar 

  201. Richards MJ, Edwards JR, Culver DH (1999) Gaynes RP Nosocomial infections in medical intensive care units in the United States. National nosocomial infections surveillance system. Crit Care Med 27:887–892

    Article  CAS  PubMed  Google Scholar 

  202. Rello J, Ochagavia A, Sabanes E et al (2000) Evaluation of outcome of intravenous catheter-related infections in critically ill patients. Am J Respir Crit Care Med 162:1027–1030

    Article  CAS  PubMed  Google Scholar 

  203. Raad II (1994) The pathogenesis and prevention of central venous catheter-related infections. Middle East J Anaesthesiol 12(4):381–403

    CAS  PubMed  Google Scholar 

  204. Arciola CR, An YH, Campoccia D et al (2005) Etiology of implant orthopedic infections: a survey on 1027 clinical isolates. Int J Artif Organs 28:1091–1100

    Article  CAS  PubMed  Google Scholar 

  205. Vongpatanasin W, Hillis LD, Lange RA (1996) Prosthetic heart valves. N Engl J Med 335:407–416

    Article  CAS  PubMed  Google Scholar 

  206. Renvert S, Lindahl C, Renvert H et al (2008) Clinical and microbiological analysis of subjects treated with Branemark or AstraTech implants: a 7-year follow-up study. Clin Oral Implants Res 19(4):342–347

    Article  CAS  PubMed  Google Scholar 

  207. Jacombs A, Tahir S, Hu H et al (2014) In vitro and in vivo investigation of the influence of implant surface on the formation of bacterial biofilm in mammary implants. Plast Reconstr Surg 133(4):471e–480e

    Article  CAS  PubMed  Google Scholar 

  208. Teughels W, Van Assche N, Sliepen I et al (2006) Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res 17(Suppl 2):68–81

    Article  PubMed  Google Scholar 

  209. Charalampakis G, Ramberg P, Dahlen G et al (2014) Effect of cleansing of biofilm formed on titanium discs. Clin Oral Implants Res 26:12397

    Google Scholar 

  210. Astrand P, Engquist B, Dahlgren S et al (2004) Astra Tech and Branemark system implants: a 5-year prospective study of marginal bonereactions. Clin Oral Implants Res 15(4):413–420

    Article  PubMed  Google Scholar 

  211. Esposito M, Murray-Curtis L, Grusovin MG et al (2007) Interventions for replacing missing teeth: different types of dental implants. Cochrane Database Syst Rev 4:CD003815

    Google Scholar 

  212. Gotfredsen K, Karlsson U (2001) A prospective 5-year study of fixed partial prostheses supported by implants with machined and TiO2-blasted surface. J Prosthodont 10(1):2–7

    Article  CAS  PubMed  Google Scholar 

  213. Wennstrom JL, Ekestubbe A, Grondahl K et al (2004) Oral rehabilitation with implant-supported fixed partial dentures in periodontitis-susceptible subjects. A 5-year prospective study. J Clin Periodontol 31(9):713–724

    Article  PubMed  Google Scholar 

  214. Darouiche RO (2001) Device-associated infections: a macroproblem that starts with microadherence. Clin Infect Dis 33:1567–1572

    Article  CAS  PubMed  Google Scholar 

  215. Kolenbrander PE, Palmer RJ Jr, Periasamy S et al (2010) Oral multispecies biofilm development and the key role of cell-cell distance. Nat Rev Microbiol 8(7):471–480

    Article  CAS  PubMed  Google Scholar 

  216. Busscher HJ, Rinastiti M, Siswomihardjo W et al (2010) Biofilm formation on dental restorative and implant materials. J Dent Res 89(7):657–665

    Article  CAS  PubMed  Google Scholar 

  217. Foster SJ (1995) Molecular characterization and functional analysis of the major autolysin of Staphylococcus aureus 8325/4. J Bacteriol 177:5723–5725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Costerton JW (1995) Overview of microbial biofilms. J Ind Microbiol 15:137–140

    Article  CAS  PubMed  Google Scholar 

  219. Klausen M, Heydorn A, Ragas P et al (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48:1511–1524

    Article  CAS  PubMed  Google Scholar 

  220. Beloin C, Roux A, Ghigo JM (2008) Escherichia coli biofilms. Curr Top Microbiol Immunol 322:249–289

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Cookson AL, Cooley WA, Woodward MJ (2002) The role of type 1 and curli fimbriae of Shiga toxin-producing Escherichia coli in adherence to abiotic surfaces. Int J Med Microbiol 292:195–205

    Article  CAS  PubMed  Google Scholar 

  222. Mohamed JA, Huang W, Nallapareddy SR et al (2004) Influence of origin of isolates, especially endocarditis isolates, and various genes on biofilm formation by Enterococcus faecalis. Infect Immun 72:3658–3663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Kemp KD, Singh KV, Nallapareddy SR et al (2007) Relative contributions of Enterococcusfaecalis OG1RF sortase-encodinggenes, srtA and bps (srtC), to biofilm formation and a murine model of urinary tract infection. Infect Immun 75:5399–5404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Rohde H, Burandt EC, Siemssen N et al (2007) Polysaccharide intercellularadhesin or proteinfactors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials 28:1711–1720

    Article  CAS  PubMed  Google Scholar 

  225. Mehall JR, Saltzman DA, Jackson RJ et al (2002) Fibrin sheath enhances central venous catheter infection. Crit Care Med 30:908–912

    Article  PubMed  Google Scholar 

  226. Vroman L, Adams AL, Fischer GC et al (1980) Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood 55:156–159

    Article  CAS  PubMed  Google Scholar 

  227. Franz S, Rammelt S, Scharnweber D et al (2011) Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 32:6692–6709

    Article  CAS  PubMed  Google Scholar 

  228. Selders GS et al (2017) An overview of the role of neutrophils in innate immunity, inflammation and host- biomaterial integration. Regen Biomater 4:55–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Brinkmann V et al (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535

    Article  CAS  PubMed  Google Scholar 

  230. Patel JD, Krupka T, Anderson JM (2007) iNOS-mediated generation of reactive oxygen and nitrogen species by biomaterial-adherent neutrophils. J Biomed Mater Res A 80:381–390

    Article  PubMed  CAS  Google Scholar 

  231. Zimmerli W, Waldvogel FA, Vaudaux P et al (1982) Pathogenesis of foreign body infection: description and characteristics of an animal model. J Infect Dis 146(4):487–497

    Article  CAS  PubMed  Google Scholar 

  232. Crémet L et al (2016) Innate immune evasion of Escherichia coli clinical strains from orthopedic implant infections. Eur J Clin Microbiol Infect Dis 35:993–999

    Article  PubMed  CAS  Google Scholar 

  233. Scherr TD et al (2015) Staphylococcus aureus biofilms induce macrophage dysfunction through leukocidin AB and alpha- toxin. MBio 6:e01021–e01015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Peschel A, Otto M (2013) Phenol- soluble modulins and staphylococcal infection. Nat Rev Microbiol 11:667–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Alexander EH et al (2003) Staphylococcus aureus-induced tumor necrosis factor – related apoptosis–inducing ligand expression mediates apoptosis and caspase-8 activation in infected osteoblasts. BMC Microbiol 3:5–16

    Article  PubMed  PubMed Central  Google Scholar 

  236. Bui LM, Conlon BP, Kidd SP (2017) Antibiotic tolerance and the alternative lifestyles of Staphylococcus aureus. Essays Biochem 61:71–79

    Article  PubMed  Google Scholar 

  237. Proctor RA et al (2006) Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 4:295–305

    Article  CAS  PubMed  Google Scholar 

  238. Sendi P et al (2006) Staphylococcus aureus small colony variants in prosthetic joint infection. Clin Infect Dis 43:961–967

    Article  PubMed  Google Scholar 

  239. deMesy Bentley KL et al (2017) Evidence of Staphylococcus aureus deformation, proliferation, and migration in canaliculi of live cortical bone in murine models of osteomyelitis. J Bone Miner Res 32:985–990

    Article  CAS  Google Scholar 

  240. Hamza T et al (2013) Intra-cellular Staphylococcus aureus alone causes infection in vivo. Eur Cell Mater 25:341–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Gristina AG, Costerton JW (1984) Bacterial adherence and the glycocalyx and their role in musculoskeletal infection. Orthop Clin North Am 15:517–535

    Article  CAS  PubMed  Google Scholar 

  242. Prabhakara R, Harro JM, Leid JG et al (2011) Suppression of the inflammatory immune response prevents the development of chronic biofilm infection due to methicillin-resistant Staphylococcus aureus. Infect Immun 79:5010–5018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Lucke M, Schmidmaier G, Sadoni S et al (2003) Gentamicin coating of metallic implants reduces implant-related osteomyelitis in rats. Bone 32:521–531

    Article  CAS  PubMed  Google Scholar 

  244. Lucke M, Wildemann B, Sadoni S et al (2005) Systemic versus local application of gentamicin in prophylaxis of implant-related osteomyelitis in a rat model. Bone 36:770–778

    Article  CAS  PubMed  Google Scholar 

  245. Berra L, De Marchi L, Yu ZX et al (2004) Endotracheal tubes coated with antiseptics decrease bacterial colonization of the ventilator circuits, lungs, and endotracheal tube. Anesthesiology 100:1446–1456

    Article  CAS  PubMed  Google Scholar 

  246. Kollef MH, Afessa B, Anzueto A et al (2008) Silver-coated endotracheal tubes and incidence of ventilator-associated pneumonia: the NASCENT randomized trial. JAMA 300:805–813

    Article  CAS  PubMed  Google Scholar 

  247. Tollefson DF, Bandyk DF, Kaebnick HW et al (1987) Surface biofilm disruption. Enhanced recovery of microorganisms from vascular prostheses. Arch Surg 122:38–43

    Article  CAS  PubMed  Google Scholar 

  248. Gahtan V, Esses GE, Bandyk DF et al (1995) Antistaphylococcal activity of rifampin-bonded gelatin-impregnated Dacron grafts. J Surg Res 58:105–110

    Article  CAS  PubMed  Google Scholar 

  249. Aboshady I, Raad I, Shah AS et al (2012) A pilot study of a triple antimicrobial-bonded Dacron graft for the prevention of aortic graft infection. J Vasc Surg 56:794–801

    Article  PubMed  Google Scholar 

  250. Haraoka M, Matsumoto T, Takahashi K et al (1995) Effect of prednisolone on ascending renal infection due to biofilm disease and lower urinary tract obstruction in rats. Urol Res 22:383–387

    Article  CAS  PubMed  Google Scholar 

  251. Allison KR, Brynildsen MP, Collins JJ (2011) Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473:216–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Fung LC, Mittelman MW, Thorner PS et al (2003) A novel rabbit model for the evaluation of biomaterial associated urinary tract infection. Can J Urol 10:2007–2012

    PubMed  Google Scholar 

  253. Rupp ME, Ulphani JS, Fey PD, Mack D (1999) Characterization of Staphylococcus epidermidis polysaccharide intercellular adhesin/hemagglutinin in the pathogenesis of intravascular catheter-associated infection in a rat model. Infect Immun 67:2656–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Rupp ME, Fey PD, Heilmann C, Gotz F (2001) Characterization of the importance of Staphylococcus epidermidis autolysin and polysaccharide intercellular adhesin in the pathogenesis of intravascular catheter-associated infection in a rat model. J Infect Dis 183:1038–1042

    Article  CAS  PubMed  Google Scholar 

  255. Chauhan A, Lebeaux D, Decante B, Kriegel I, Escande MC, Ghigo JM, Beloin C (2012) A rat model of central venous catheter to study establishment of long-term bacterial biofilm and related acute and chronic infections. PLoS One 7:e37281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Chauhan A, Ghigo JM, Beloin C (2016) Study of in vivo catheter biofilm infections using pediatric central venous catheter implanted in rat. Nat Protoc 11(3):525–541

    Article  CAS  PubMed  Google Scholar 

  257. Chauhan A, Lebeaux D, Ghigo JM, Beloin C (2012) Full and broad-spectrum in vivo eradication of catheter-associated biofilms using gentamicin-EDTA antibiotic lock therapy. Antimicrob Agents Chemother 56:6310–6318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Chauhan A, Bernardin A, Mussard W et al (2014) Preventing biofilm formation and associated occlusion by biomimetic glycocalyxlike polymer in central venous catheters. J Infect Dis 210(9):1347–1356

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bhowmik, A., Malhotra, A., Jana, S., Chauhan, A. (2021). Biofilm Formation and Pathogenesis. In: Nag, M., Lahiri, D. (eds) Analytical Methodologies for Biofilm Research. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1378-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1378-8_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-1377-1

  • Online ISBN: 978-1-0716-1378-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics