Skip to main content

Detecting ADP-Ribosylation in RNA

  • Protocol
  • First Online:
RNA Modifications

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2298))

  • 2520 Accesses

Abstract

ADP-ribosylation is a widespread reversible chemical modification of macromolecular targets. Protein ADP-ribosylation has been widely studied and plays a vital role in the regulation of several biological processes. In recent years there has been increasing interest in alternative ADP-ribosylation targets such as nucleic acids—DNA and RNA. Here we report different methods to detect ADP-ribosylation of RNA substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gibson BA, Kraus WL (2012) New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol 13:411–424

    Article  CAS  PubMed  Google Scholar 

  2. Vyas S, Matic I, Uchima L, Rood J, Zaja R, Hay RT, Ahel I, Chang P (2014) Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat Commun 5:4426

    Article  CAS  PubMed  Google Scholar 

  3. Crawford K, Bonfiglio JJ, Mikoč A, Matic I, Ahel I (2018) Specificity of reversible ADP-ribosylation and regulation of cellular processes. Crit Rev Biochem Mol Biol 53:64–82

    Article  CAS  PubMed  Google Scholar 

  4. Cohen MS, Chang P (2018) Insights into the biogenesis, function, and regulation of ADP-ribosylation. Nat Chem Biol 14:236–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gupte R, Liu Z, Kraus WL (2017) PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev 31:101–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Palazzo L, Mikoč A, Ahel I (2017) ADP-ribosylation: new facets of an ancient modification. FEBS J 284:2932–2946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rack JGM, Morra R, Barkauskaite E, Kraehenbuehl R, Ariza A, Qu Y, Ortmayer M, Leidecker O, Cameron DR, Matic I et al (2015) Identification of a class of protein ADP-ribosylating sirtuins in microbial pathogens. Mol Cell 59:309–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Choi J-E, Mostoslavsky R (2014) Sirtuins, metabolism, and DNA repair. Curr Opin Genet Dev 26:24–32

    Article  CAS  PubMed  Google Scholar 

  9. Barkauskaite E, Jankevicius G, Ahel I (2015) Structures and mechanisms of enzymes employed in the synthesis and degradation of PARP-dependent protein ADP-ribosylation. Mol Cell 58:935–946

    Article  CAS  PubMed  Google Scholar 

  10. Eisemann T, Pascal JM (2020) Poly(ADP-ribose) polymerase enzymes and the maintenance of genome integrity. Cell Mol Life Sci 77:19–33

    Article  CAS  PubMed  Google Scholar 

  11. Kim D-S, Challa S, Jones A, Kraus WL (2020) PARPs and ADP-ribosylation in RNA biology: from RNA expression and processing to protein translation and proteostasis. Genes Dev 34:302–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rack JGM, Palazzo L, Ahel I (2020) (ADP-ribosyl)hydrolases: structure, function, and biology. Genes Dev 34:263–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Slade D, Dunstan MS, Barkauskaite E, Weston R, Lafite P, Dixon N, Ahel M, Leys D, Ahel I (2011) The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature 477:616–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Oka S, Kato J, Moss J (2006) Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase. J Biol Chem 281:705–713

    Article  CAS  PubMed  Google Scholar 

  15. Lin W, Amé J-C, Aboul-Ela N, Jacobson EL, Jacobson MK (1997) Isolation and characterization of the cDNA encoding bovine poly(ADP-ribose) glycohydrolase. J Biol Chem 272:11895–11901

    Article  CAS  PubMed  Google Scholar 

  16. Sharifi R, Morra R, Appel CD, Tallis M, Chioza B, Jankevicius G, Simpson MA, Matic I, Ozkan E, Golia B et al (2013) Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. EMBO J 32:1225–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jankevicius G, Hassler M, Golia B, Rybin V, Zacharias M, Timinszky G, Ladurner AG (2013) A family of macrodomain proteins reverses cellular mono-ADP-ribosylation. Nat Struct Mol Biol 20:508–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen D, Vollmar M, Rossi MN, Phillips C, Kraehenbuehl R, Slade D, Mehrotra PV, von Delft F, Crosthwaite SK, Gileadi O et al (2011) Identification of macrodomain proteins as novel O-acetyl-ADP-ribose deacetylases. J Biol Chem 286:13261–13271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ono T, Kasamatsu A, Oka S, Moss J (2006) The 39-kDa poly(ADP-ribose) glycohydrolase ARH3 hydrolyzes O-acetyl-ADP-ribose, a product of the Sir2 family of acetyl-histone deacetylases. Proc Natl Acad Sci U S A 103:16687–16691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kato J, Zhu J, Liu C, Moss J (2007) Enhanced sensitivity to cholera toxin in ADP-ribosylarginine hydrolase-deficient mice. Mol Cell Biol 27:5534–5543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Palazzo L, Thomas B, Jemth A-S, Colby T, Leidecker O, Feijs KLH, Zaja R, Loseva O, Puigvert JC, Matic I et al (2015) Processing of protein ADP-ribosylation by Nudix hydrolases. Biochem J 468:293–301

    Article  CAS  PubMed  Google Scholar 

  22. Palazzo L, Daniels CM, Nettleship JE, Rahman N, McPherson RL, Ong S-E, Kato K, Nureki O, Leung AKL, Ahel I (2016) ENPP1 processes protein ADP-ribosylation in vitro. FEBS J 283:3371–3388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Takamura-Enya T, Watanabe M, Totsuka Y, Kanazawa T, Matsushima-Hibiya Y, Koyama K, Sugimura T, Wakabayashi K (2001) Mono(ADP-ribosyl)ation of 2'-deoxyguanosine residue in DNA by an apoptosis-inducing protein, pierisin-1, from cabbage butterfly. Proc Natl Acad Sci U S A 98:12414–12419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nakano T, Takahashi-Nakaguchi A, Yamamoto M, Watanabe M (2015) In: Koch-Nolte F (ed) Endogenous ADP-ribosylation. Springer, Cham, pp 127–149

    Google Scholar 

  25. Nakano T, Matsushima-Hibiya Y, Yamamoto M, Enomoto S, Matsumoto Y, Totsuka Y, Watanabe M, Sugimura T, Wakabayashi K (2006) Purification and molecular cloning of a DNA ADP-ribosylating protein, CARP-1, from the edible clam Meretrix lamarckii. Proc Natl Acad Sci U S A 103:13652–13657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jankevicius G, Ariza A, Ahel M, Ahel I (2016) The toxin-antitoxin system DarTG catalyzes reversible ADP-ribosylation of DNA. Mol Cell 64:1109–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lawarée E, Jankevicius G, Cooper C, Ahel I, Uphoff S, Tang CM (2020) DNA ADP-ribosylation stalls replication and is reversed by RecF-mediated homologous recombination and nucleotide excision repair. Cell Rep 30:1373–1384

    Article  PubMed  Google Scholar 

  28. Talhaoui I, Lebedeva NA, Zarkovic G, Saint-Pierre C, Kutuzov MM, Sukhanova MV, Matkarimov BT, Gasparutto D, Saparbaev MK, Lavrik OI et al (2016) Poly(ADP-ribose) polymerases covalently modify strand break termini in DNA fragments in vitro. Nucleic Acids Res 44:9279–9295

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Munnur D, Ahel I (2017) Reversible mono-ADP-ribosylation of DNA breaks. FEBS J 284:4002–4016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zarkovic G, Belousova EA, Talhaoui I, Saint-Pierre C, Kutuzov MM, Matkarimov BT, Biard D, Gasparutto D, Lavrik OI, Ishchenko AA (2018) Characterization of DNA ADP-ribosyltransferase activities of PARP2 and PARP3: new insights into DNA ADP-ribosylation. Nucleic Acids Res 46:2417–2431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Belousova EA, Ishchenko A, Lavrik OI (2018) DNA is a new target of Parp3. Sci Rep 8:4176–4176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Agnew T, Munnur D, Crawford K, Palazzo L, Mikoč A, Ahel I (2018) MacroD1 is a promiscuous ADP-Ribosyl hydrolase localized to mitochondria. Front Microbiol 9:20–20

    Article  PubMed  PubMed Central  Google Scholar 

  33. Munir A, Banerjee A, Shuman S (2018) NAD+-dependent synthesis of a 5'-phospho-ADP-ribosylated RNA/DNA cap by RNA 2'-phosphotransferase Tpt1. Nucleic Acids Res 46:9617–9624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Munnur D, Bartlett E, Mikolčević P, Kirby IT, Matthias Rack JG, Mikoč A, Cohen MS, Ahel I (2019) Reversible ADP-ribosylation of RNA. Nucleic Acids Res 47:5658–5669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kleine H, Poreba E, Lesniewicz K, Hassa PO, Hottiger MO, Litchfield DW, Shilton BH, Lüscher B (2008) Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-Ribosylation. Mol Cell 32:57–69

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Wellcome Trust (101794 and 210634), Biotechnology and Biological Sciences Research Council [BB/R007195/1], and Cancer Research United Kingdom [C35050/A22284].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Ahel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Munnur, D., Ahel, I. (2021). Detecting ADP-Ribosylation in RNA. In: McMahon, M. (eds) RNA Modifications. Methods in Molecular Biology, vol 2298. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1374-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1374-0_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1373-3

  • Online ISBN: 978-1-0716-1374-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics