Skip to main content
Book cover

Metastasis pp 253–267Cite as

In Vivo Assessment of Metastatic Cell Potential in Prostate Cancer

Part of the Methods in Molecular Biology book series (MIMB,volume 2294)

Abstract

Metastasis is the main cause of death for cancer patients, but our ability to improve clinical outcome first requires a better understanding of the dynamics, cellular mechanisms, and kinetics of metastasis. In prostate cancer (PCa), metastatic tumor cells preferentially colonize to bone. However, a lack of applicable mouse models has limited our ability to study this process accurately. Here, we describe a strategy to bypass this limitation: human PCa cells are injected into immunodeficient mice (at tibia, the left ventricle of heart and the iliac artery). Using this novel technique, the metastatic capabilities of these human PCa cells (e.g., colonization and proliferation potential) can be analyzed in bone with an in vivo imaging system.

Key words

  • Metastasis
  • Prostate cancer
  • Mouse model
  • In vivo imaging
  • Bone

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-1350-4_18
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-1350-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    CrossRef  Google Scholar 

  2. Morote J, Ropero J, Planas J et al (2012) Metabolic syndrome increases the risk of aggressive prostate cancer detection. BJU Int 111:1031–1036. https://doi.org/10.1111/j.1464-410X.2012.11406.x

    CAS  CrossRef  PubMed  Google Scholar 

  3. Chang A, Autio K, Roach M, Scher H (2014) High-risk prostate cancer-classification and therapy. Nat Rev Clin Oncol 11:308–323. https://doi.org/10.1038/nrclinonc.2014.68

    CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Nardella C, Carracedo A, Salmena L, Pandolfi PP (2010) Faithfull modeling of PTEN loss driven diseases in the mouse. Curr Top Microbiol Immunol 347:135–168. https://doi.org/10.1007/82_2010_62

    CAS  CrossRef  PubMed  Google Scholar 

  5. Salvador F, Llorente A, Gomis RR (2019) From latency to overt bone metastasis in breast cancer: potential for treatment and prevention. J Pathol 249:6–18. https://doi.org/10.1002/path.5292

    CrossRef  PubMed  PubMed Central  Google Scholar 

  6. Massagué J, Obenauf AC (2016) Metastatic colonization by circulating tumour cells. Nature 529:298–306

    CrossRef  Google Scholar 

  7. James ND, de Bono JS, Spears MR et al (2017) Abiraterone for prostate cancer not previously treated with hormone therapy. N Engl J Med 377:338–351. https://doi.org/10.1056/NEJMoa1702900

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Sweeney CJ, Chen Y-H, Carducci M et al (2015) Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N Engl J Med 373:737–746. https://doi.org/10.1056/NEJMoa1503747

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Robinson D, Van Allen EM, Wu YM et al (2015) Integrative clinical genomics of advanced prostate cancer. Cell 161:1215–1228. https://doi.org/10.1016/j.cell.2015.05.001

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Castro E, Romero-Laorden N, Del Pozo A et al (2019) PROREPAIR-B: a prospective cohort study of the impact of germline DNA repair mutations on the outcomes of patients with metastatic castration-resistant prostate cancer. J Clin Oncol 37:490–503. https://doi.org/10.1200/JCO.18.00358

    CAS  CrossRef  PubMed  Google Scholar 

  11. Obenauf AC, Massagué J (2015) Surviving at a distance: organ-specific metastasis. Trends Cancer 1:76–91

    CrossRef  Google Scholar 

  12. Peinado H, Zhang H, Matei IR et al (2017) Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer 17:302–317

    CAS  CrossRef  Google Scholar 

  13. Bubendorf L, Schöpfer A, Wagner U et al (2000) Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol 31:578–583. https://doi.org/10.1053/hp.2000.6698

    CAS  CrossRef  PubMed  Google Scholar 

  14. Saad F, Olsson C, Schulman CC (2004) Skeletal morbidity in men with prostate cancer: quality-of-life considerations throughout the continuum of care. Eur Urol 46:731–740. https://doi.org/10.1016/j.eururo.2004.08.016

    CrossRef  PubMed  Google Scholar 

  15. Hermanova I, Zúñiga-García P, Caro-Maldonado A et al (2020) Genetic manipulation of LKB1 elicits lethal metastatic prostate cancer. J Exp Med 217:e20191787. https://doi.org/10.1084/jem.20191787

    CAS  CrossRef  PubMed  Google Scholar 

  16. Ku SY, Rosario S, Wang Y et al (2017) Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 355:78–83. https://doi.org/10.1126/science.aah4199

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Hubbard GK, Mutton LN, Khalili M et al (2016) Combined MYC activation and Pten loss are sufficient to create genomic instability and lethal metastatic prostate cancer. Cancer Res 76:283–292. https://doi.org/10.1158/0008-5472.CAN-14-3280

    CAS  CrossRef  PubMed  Google Scholar 

  18. Magnon C, Hall SJ, Lin J et al (2013) Autonomic nerve development contributes to prostate cancer progression. Science 12:6142. https://doi.org/10.1126/science.1236361

    CrossRef  Google Scholar 

  19. Torrano V, Valcarcel-Jimenez L, Cortazar AR et al (2016) The metabolic co-regulator PGC1α suppresses prostate cancer metastasis. Nat Cell Biol 18:645–656. https://doi.org/10.1038/ncb3357

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Gomez-Cuadrado L, Tracey N, Ma R et al (2017) Mouse models of metastasis: Progress and prospects. Dis Model Mech 10:1061–1074

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger R. Gomis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Nunez-Olle, M., Guiu, M., Gomis, R.R. (2021). In Vivo Assessment of Metastatic Cell Potential in Prostate Cancer. In: Stein, U.S. (eds) Metastasis. Methods in Molecular Biology, vol 2294. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1350-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1350-4_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1349-8

  • Online ISBN: 978-1-0716-1350-4

  • eBook Packages: Springer Protocols