Skip to main content

Detection of Tumor Cell-Induced Platelet Aggregation and Granule Secretion

  • Protocol
  • First Online:
Metastasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2294))

Abstract

Hematogenous metastatic spread of cancer is strongly dependent on and triggered by an intensive interplay of tumor cells with platelets. Immediately after entering the blood vascular system, tumor cells are surrounded by a platelet cloak, which protects them physically from shear stress and from attacks by the immune surveillance. Furthermore, tumor cell binding activates platelets, which in turn release growth factors and chemokines to recruit myeloid cells into the platelet/tumor cell microemboli, eventually create a permissive microenvironment in the early metastatic niche. Although the molecular mechanisms of tumor cells to activate platelets appear versatile being a matter of further research, interference with platelet activation turns out to be an attractive target to efficiently inhibit tumor metastasis. Some experimental assays are generally recognized to follow tumor cell-induced platelet activation (TCIPA), which provide an insight into the molecular mechanisms of TCIPA and allow searching for potential inhibitors. In this chapter, we describe the two most prominent experimental assays to follow TCIPA, namely platelet aggregation and platelet granule secretion, experimentally realized by dense granules´ ATP quantification. Although light transmission aggregometry and ATP detection from dense granule secretion are two age-old techniques, they are still highly relevant to provide reliable information concerning platelet activation status since all tumor cell-derived molecular triggers are covered and monitored in the experimental outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Semple JW, Italiano JE, Freedman J (2011) Platelets and the immune continuum. Nat Rev Immunol 11:264–274. https://doi.org/10.1038/nri2956

    Article  CAS  PubMed  Google Scholar 

  2. Franco AT, Corken A, Ware J (2015) Platelets at the interface of thrombosis, inflammation, and cancer. Blood 126:582–588. https://doi.org/10.1182/blood-2014-08-531582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gay LJ, Felding-Habermann B (2011) Contribution of platelets to tumour metastasis. Nat Rev Cancer 11:123–134. https://doi.org/10.1038/nrc3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Labelle M, Hynes RO (2012) The initial hours of metastasis: the importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discov 2:1091–1099. https://doi.org/10.1158/2159-8290.CD-12-0329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li N (2016) Platelets in cancer metastasis: to help the “villain” to do evil. Int J Cancer 138:2078–2087. https://doi.org/10.1002/ijc.29847

    Article  CAS  PubMed  Google Scholar 

  6. Schlesinger M (2018) Role of platelets and platelet receptors in cancer metastasis. J Hematol Oncol 11:125. https://doi.org/10.1186/s13045-018-0669-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kopp H-G, Placke T, Salih HR (2009) Platelet-derived transforming growth factor-beta down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res 69:7775–7783. https://doi.org/10.1158/0008-5472.CAN-09-2123

    Article  CAS  PubMed  Google Scholar 

  8. Maurer S, Kropp KN, Klein G et al (2018) Platelet-mediated shedding of NKG2D ligands impairs NK cell immune-surveillance of tumor cells. Onco Targets Ther 7:e1364827. https://doi.org/10.1080/2162402X.2017.1364827

    Article  Google Scholar 

  9. Placke T, Kopp H-G, Salih HR (2011) Modulation of natural killer cell anti-tumor reactivity by platelets. J Innate Immun 3:374–382. https://doi.org/10.1159/000323936

    Article  CAS  PubMed  Google Scholar 

  10. Lowe KL, Navarro-Nunez L, Watson SP (2012) Platelet CLEC-2 and podoplanin in cancer metastasis. Thromb Res 129(Suppl 1):S30–S37. https://doi.org/10.1016/S0049-3848(12)70013-0

    Article  CAS  PubMed  Google Scholar 

  11. Stone JP, Wagner DD (1993) P-selectin mediates adhesion of platelets to neuroblastoma and small cell lung cancer. J Clin Invest 92:804–813. https://doi.org/10.1172/JCI116654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim YJ, Borsig L, Varki NM, Varki A (1998) P-selectin deficiency attenuates tumor growth and metastasis. Proc Natl Acad Sci U S A 95:9325–9330

    Article  CAS  Google Scholar 

  13. Yu Y, Zhou X-D, Liu Y-K et al (2002) Platelets promote the adhesion of human hepatoma cells with a highly metastatic potential to extracellular matrix protein: involvement of platelet P-selectin and GP IIb-IIIa. J Cancer Res Clin Oncol 128:283–287. https://doi.org/10.1007/s00432-002-0325-6

    Article  CAS  PubMed  Google Scholar 

  14. Rickles FR, Patierno S, Fernandez PM (2003) Tissue factor, thrombin, and cancer. Chest 124:58S–68S

    Article  CAS  Google Scholar 

  15. Zucchella M, Dezza L, Pacchiarini L et al (1989) Human tumor cells cultured “in vitro” activate platelet function by producing ADP or thrombin. Haematologica 74:541–545

    CAS  PubMed  Google Scholar 

  16. Aitokallio-Tallberg A, Kärkkäinen J, Pantzar P et al (1985) Prostacyclin and thromboxane in breast cancer: relationship between steroid receptor status and medroxyprogesterone acetate. Br J Cancer 51:671–674

    Article  CAS  Google Scholar 

  17. Yu L-X, Yan L, Yang W et al (2014) Platelets promote tumour metastasis via interaction between TLR4 and tumour cell-released high-mobility group box1 protein. Nat Commun 5:5256. https://doi.org/10.1038/ncomms6256

    Article  CAS  PubMed  Google Scholar 

  18. Labelle M, Begum S, Hynes RO (2011) Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 20:576–590. https://doi.org/10.1016/j.ccr.2011.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mitrugno A, Williams D, Kerrigan SW, Moran N (2014) A novel and essential role for FcγRIIa in cancer cell-induced platelet activation. Blood 123:249–260. https://doi.org/10.1182/blood-2013-03-492447

    Article  CAS  PubMed  Google Scholar 

  20. Greening DW, Simpson RJ, Sparrow RL (2017) Preparation of platelet concentrates for research and transfusion purposes. Methods Mol Biol 1619:31–42. https://doi.org/10.1007/978-1-4939-7057-5_3

    Article  CAS  PubMed  Google Scholar 

  21. Harrison P, Briggs C, Machin SJ (2004) Platelet counting. Methods Mol Biol 272:29–46. https://doi.org/10.1385/1-59259-782-3:029

    Article  PubMed  Google Scholar 

  22. Pérez de León AA, Tabachnick WJ (1996) Apyrase activity and adenosine diphosphate induced platelet aggregation inhibition by the salivary gland proteins of Culicoides variipennis, the north American vector of bluetongue viruses. Vet Parasitol 61:327–338. https://doi.org/10.1016/0304-4017(95)00828-4

    Article  PubMed  Google Scholar 

  23. Carroll MF, Schade DS (2003) A practical approach to hypercalcemia. Am Fam Physician 67:1959–1966

    PubMed  Google Scholar 

  24. Greenfield EA (2019) Myeloma and Hybridoma cell counts and viability checks. Cold spring Harb Protoc 2019:pdb.prot103259. https://doi.org/10.1101/pdb.prot103259

    Article  Google Scholar 

  25. Gockel LM, Ponert JM, Schwarz S et al (2018) The low molecular weight heparin Tinzaparin attenuates platelet activation in terms of metastatic niche formation by coagulation-dependent and independent pathways. Molecules 23:2753. https://doi.org/10.3390/molecules23112753

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Bendas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schwarz, S., Schlesinger, M., Bendas, G. (2021). Detection of Tumor Cell-Induced Platelet Aggregation and Granule Secretion. In: Stein, U.S. (eds) Metastasis. Methods in Molecular Biology, vol 2294. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1350-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1350-4_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1349-8

  • Online ISBN: 978-1-0716-1350-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics