Skip to main content

Profiling Structural Alterations During Rab5 Nucleotide Exchange by HDX-MS

  • Protocol
  • First Online:
Rab GTPases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2293))


Hydrogen deuterium exchange mass spectrometry (HDX-MS) gives insight into the structure of proteins. By monitoring the rate of exchange of the amide hydrogens on the protein backbone with deuterium atoms in the solvent, one can determine if a given region is highly structured or dynamic, map binding sites of interacting molecules or determine if a binding event is associated with allosteric structural alterations in a protein. Herein, we illustrate the use of this technique to monitor the nucleotide exchange process in Rab5, using the guanine nucleotide exchange factor (GEF)–effector complex, Rabex5:Rabaptin5. By simultaneously monitoring the HDX in Rab5, Rabex5 and Rabaptin5, we can directly visualize nucleotide exchange in Rab5, gain mechanistic insights into the exchange reaction and, by witnessing the transfer of Rab5 from Rabex5 to Rabaptin5, provide direct evidence for the positive feedback loop generated by a GEF–effector complex. HDX-MS can be used to monitor a variety of Rab protein–effector and –regulator interactions and be widely applied to other enzymatic processes as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. Zhang Z, Smith DL (1993) Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation. Protein Sci 2(4):522–531

    Article  CAS  Google Scholar 

  2. Masson GR et al (2019) Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nat Methods 16(7):595–602

    Article  CAS  Google Scholar 

  3. Masson GR, Jenkins ML, Burke JE (2017) An overview of hydrogen deuterium exchange mass spectrometry (HDX-MS) in drug discovery. Expert Opin Drug Discov 12(10):981–994

    Article  CAS  Google Scholar 

  4. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40

    Article  CAS  Google Scholar 

  5. Lauer J et al (2019) Auto-regulation of Rab5 GEF activity in Rabex5 by allosteric structural changes, catalytic core dynamics and ubiquitin binding. eLife 8:e46302

    Article  Google Scholar 

  6. Trabjerg E et al (2015) Conformational analysis of large and highly disulfide-stabilized proteins by integrating online electrochemical reduction into an optimized H/D exchange mass spectrometry workflow. Anal Chem 87(17):8880–8888

    Article  CAS  Google Scholar 

  7. Nwanochie E, Uversky VN (2019) Structure determination by single-particle Cryo-electron microscopy: only the sky (and intrinsic disorder) is the limit. Int J Mol Sci 20(17):4186

    Article  CAS  Google Scholar 

  8. Doerr A (2018) High-speed protein crystallography. Nat Methods 15(11):855

    Article  CAS  Google Scholar 

  9. Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450(7172):964–972

    Article  CAS  Google Scholar 

  10. Eisenmesser EZ et al (2005) Intrinsic dynamics of an enzyme underlies catalysis. Nature 438(7064):117–121

    Article  CAS  Google Scholar 

  11. Bucci C et al (1992) The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70(5):715–728

    Article  CAS  Google Scholar 

  12. Chavrier P et al (1990) Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 62(2):317–329

    Article  CAS  Google Scholar 

  13. Horiuchi H et al (1997) A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 90(6):1149–1159

    Article  CAS  Google Scholar 

  14. Chiou JG et al (2018) Principles that govern competition or co-existence in rho-GTPase driven polarization. PLoS Comput Biol 14(4):e1006095

    Article  CAS  Google Scholar 

  15. Jackson CL (2014) GEF-effector interactions. Cell Logist 4(2):e943616

    Article  Google Scholar 

  16. Nagashima Y et al (2018) A rho-based reaction-diffusion system governs cell wall patterning in metaxylem vessels. Sci Rep 8(1):11542

    Article  CAS  Google Scholar 

  17. Cezanne A et al (2020) A non-linear system patterns Rab5 GTPase on the membrane. eLife 9:e54434

    Article  CAS  Google Scholar 

  18. Keppel TR et al (2011) An efficient and inexpensive refrigerated LC system for H/D exchange mass spectrometry. J Am Soc Mass Spectrom 22(8):1472–1476

    Article  CAS  Google Scholar 

  19. Pascal BD et al (2012) HDX workbench: software for the analysis of H/D exchange MS data. J Am Soc Mass Spectrom 23(9):1512–1521

    Article  CAS  Google Scholar 

  20. Mishra A et al (2010) Structural basis for Rab GTPase recognition and endosome tethering by the C2H2 zinc finger of early endosomal autoantigen 1 (EEA1). Proc Natl Acad Sci U S A 107(24):10866–10871

    Article  CAS  Google Scholar 

  21. Hamuro Y et al (2008) Specificity of immobilized porcine pepsin in H/D exchange compatible conditions. Rapid Commun Mass Spectrom 22(7):1041–1046

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Janelle Lauer or Marino Zerial .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lauer, J., Zerial, M. (2021). Profiling Structural Alterations During Rab5 Nucleotide Exchange by HDX-MS. In: Li, G., Segev, N. (eds) Rab GTPases. Methods in Molecular Biology, vol 2293. Humana, New York, NY.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1345-0

  • Online ISBN: 978-1-0716-1346-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics