Skip to main content

Thin-Layer Chromatography in Structure and Recognition Studies of Shiga Toxin Glycosphingolipid Receptors

  • Protocol
  • First Online:
Shiga Toxin-Producing E. coli

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2291))

Abstract

Glycosphingolipids (GSLs) consist of a ceramide (Cer) lipid anchor, which is typically composed of the long-chain aminoalcohol sphingosine (d18:1) and a fatty acid (mostly C16–C24) and a sugar moiety harboring to a great extent one to five monosaccharides. GSLs of the globo-series are well-recognized receptors of Shiga toxins (Stxs) released by Stx-producing Escherichia coli (STEC). Receptors for the Stx subtypes Stx1a and Stx2a are globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), whereby Gb3Cer represents their high-affinity and Gb4Cer their low-affinity receptor. In addition to Gb3Cer and Gb4Cer, Gb5Cer and Forssman GSL are further receptors of the Stx2e subtype rendering Stx2e unique among the various Stx subtypes. Thin-layer chromatography (TLC) is a convenient and ubiquitously employed method for analyzing GSL mixtures of unknown composition. In particular, TLC immunochemical overlay detection allows for sensitive identification of Stx-binding GSLs in complex mixtures directly on the TLC plate. For this purpose, specific anti-GSL antibodies or Stxs themselves in conjunction with anti-Stx antibodies can be used. The described protocols of antibody-mediated detection of TLC-separated globo-series GSLs and corresponding identification of Stx-binding globo-series GSLs will provide detailed advice for successful GSL analysis and particularly highlight the power of the TLC overlay technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karch H, Tarr PI, Bielaszewska M (2005) Enterohaemorrhagic Escherichia coli in human medicine. Int J Med Microbiol 295:405–418. https://doi.org/10.1016/ijmm.2005.06.009.

    Article  CAS  PubMed  Google Scholar 

  2. Melton-Celsa A, Mohawk K, Teel L et al (2012) Pathogenesis of Shiga toxin-producing Escherichia coli. Curr Top Microbiol Immunol 357:67–103. https://doi.org/10.1007/82_2011_176.

    Article  CAS  PubMed  Google Scholar 

  3. Nguyen Y, Sperandio V (2012) Enterohemorrhagic E. coli (EHEC) pathogenesis. Front Cell Infect Microbiol 2:90. https://doi.org/10.3389/fcimb.2012.00090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kampmeier S, Berger M, Mellmann A et al (2018) The 2011 German enterohemorrhagic Escherichia coli O104:H4 outbreak – the danger is still out there. Curr Top Microbiol Immunol 416:117–148. https://doi.org/10.1007/82_2018_107.

    Article  CAS  PubMed  Google Scholar 

  5. Karmali MA (2009) Host and pathogen determinants of verocytotoxin-producing Escherichia coli-associated hemolytic uremic syndrome. Kidney Int Suppl 112:S4–S7. https://doi.org/10.1038/ki.2008.608.

    Article  CAS  Google Scholar 

  6. Tarr PI, Gordon CA, Chandler WL (2005) Shiga-toxin-producing Escherichia coli and haemolytic urameic syndrome. Lancet 365:1073–1086. https://doi.org/10.1016/S0140-6736(05)71144-2

    Article  CAS  PubMed  Google Scholar 

  7. Zoja C, Buelli S, Morigi M (2010) Shiga toxin-associated hemolytic uremic syndrome: pathophysiology of endothelial dysfunction. Pediatr Nephrol 25:2231–2240. https://doi.org/10.1007/s00467-010-1522-1

    Article  PubMed  Google Scholar 

  8. Davis TK, Van De Kar NC, Tarr PI (2014) Shiga toxin/verocytotoxin-producing Escherichia coli infections: practical clinical perspectives. Microbiol Spectr 2:EHEC-0025-2014. https://doi.org/10.1128/microbiolspec.EHEC-0025-2014

    Article  CAS  PubMed  Google Scholar 

  9. Bryan A, Youngster I, McAdam AJ (2015) Shiga toxin producing Escherichia coli. Clin Lab Med 35:247–272. https://doi.org/10.1016/j.cll.2015.02.004

    Article  PubMed  Google Scholar 

  10. Scheutz F, Teel LD, Beutin L et al (2012) Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J Clin Microbiol 50:2951–2963. https://doi.org/10.1128/JCM.00860-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bielaszewska M, Karch H (2005) Consequences of enterohaemohhagic Escherichia coli infection for the vascular endothelium. Thromb Haemost 94:312–318. https://doi.org/10.1160/TH05-04-0265

    Article  CAS  PubMed  Google Scholar 

  12. Bauwens A, Betz J, Meisen I et al (2013) Facing glycosphingolipid-Shiga toxin interaction: dire straits for endothelial cells of the human vasculature. Cell Mol Life Sci 70:425–457. https://doi.org/10.1007/s00018-012-1060-z

    Article  CAS  PubMed  Google Scholar 

  13. Legros N, Pohlentz G, Steil D et al (2018) Shiga toxin-glycosphingolipid interaction: status quo of research with focus on primary human brain and kidney endothelial cells. Int J Med Microbiol 308:1073–1084. https://doi.org/10.1016/j.ijmm.2018.09.003

    Article  CAS  PubMed  Google Scholar 

  14. Schüller S (2011) Shiga toxin interaction with human intestinal epithelium. Toxins 3:626–639. https://doi.org/10.3390/toxins3060626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Betz J, Dorn I, Kouzel IU et al (2016) Shiga toxin of enterohaemorrhagic Escherichia coli directly injures developing human erythrocytes. Cell Microbiol 18:1339–1348. https://doi.org/10.1111/cmi.12592.

    Article  CAS  PubMed  Google Scholar 

  16. Casanova NA, Redondo LM, Dailoff GC (2018) Overview of the role of Shiga toxins in porcine edema disease pathogenesis. Toxicon 148:149–154. https://doi.org/10.1016/j.toxicon.2018.04.019

    Article  CAS  PubMed  Google Scholar 

  17. Steil D, Bonse R, Meisen I et al (2016) A topographical atlas of Shiga toxin 2e receptor distribution in the tissues of weaned piglets. Toxins (Basel) 8:E357. https://doi.org/10.3390/toxins8120357

    Article  CAS  Google Scholar 

  18. Meisen I, Rosenbrück R, Galla HJ et al (2013) Expression of Stx2e glycosphingolipid receptors of primary porcine brain endothelial cells and toxin-mediated breakdown of the blood-brain barrier. Glycobiology 23:745–759. https://doi.org/10.1093/glycob/cwt013

    Article  CAS  PubMed  Google Scholar 

  19. Friedrich AW, Bielaszewska M, Zhang WL et al (2002) Escherichia coli harboring Shiga toxin 2 gene variants: frequency and association with clinical symptoms. J Infect Dis 185:74–84. https://doi.org/10.1086/338115

    Article  CAS  PubMed  Google Scholar 

  20. Sonntag AK, Bielaszewska M, Mellmann A et al (2005) Shiga toxin 2e-producing Escherichia coli isolates from humans and pigs differ in their virulence profiles and interaction with intestinal epithelial cells. Appl Environ Microbiol 71:8855–8863. https://doi.org/10.1128/AEM.71.12.8855-8863.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Merrill AH Jr (2011) Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 111:6387–6422. https://doi.org/10.1021/cr2002917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. D’Angelo G, Capasso S, Sticco L et al (2013) Glycosphingolipids: synthesis and functions. FEBS J 280:6338–6353. https://doi.org/10.1111/febs.12559

    Article  CAS  PubMed  Google Scholar 

  23. Jennemann R, Gröne HJ (2013) Cell-specific in vivo functions of glycosphingolipids: lessons from genetic deletions of enzymes involved in glycosphingolipid synthesis. Prog Lipid Res 52:231–248. https://doi.org/10.1016/j.plipres.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  24. Müthing J, Schweppe CH, Karch H et al (2009) Shiga toxins, glycosphingolipid diversity, and endothelial cell injury. Thromb Haemost 101:252–264

    Article  Google Scholar 

  25. Müthing J, Meisen I, Zhang W et al (2012) Promiscuous Shiga toxin 2e and its intimate relationship to Forssman. Glycobiology 22:849–862. https://doi.org/10.1093/glycob/cws009

    Article  CAS  PubMed  Google Scholar 

  26. Sandvig K, Bergan J, Kavaliauskiene S et al (2014) Lipid requirements for entry of protein toxins into cells. Prog Lipid Res 54:1–13. https://doi.org/10.1016/j.plipres.2014.01.001

    Article  CAS  PubMed  Google Scholar 

  27. Nakajima H, Kiyokawa N, Katagiri YU et al (2001) Kinetic analysis of binding between Shiga toxin and receptor glycolipid Gb3Cer by surface plasmon resonance. J Biol Chem 276:42915–42922. https://doi.org/10.1074/jbc.M106015200

    Article  CAS  PubMed  Google Scholar 

  28. Steil D, Pohlentz G, Legros N et al (2018) Combining mass spectrometry, surface acoustic wave interaction analysis, and cell viability assays for characterization of Shiga toxin subtypes of pathogenic Escherichia coli bacteria. Anal Chem 90:8989–8997. https://doi.org/10.1021/acs.analchem.8b01189

    Article  CAS  PubMed  Google Scholar 

  29. DeGrandis S, Law H, Brunton J et al (1989) Globotetraosylceramide is recognized by the pig edema disease toxin. J Biol Chem 264:12520–12525

    Article  CAS  Google Scholar 

  30. Keusch GT, Jacewicz M, Acheson DW et al (1995) Globotriaosylceramide, Gb3, is an alternative functional receptor for Shiga-like toxin 2e. Infect Immun 63:1138–1141

    Article  CAS  Google Scholar 

  31. Steil D, Schepers CL, Pohlentz G et al (2015) Shiga toxin glycosphingolipid receptors of Vero-B4 kidney epithelial cells and their membrane microdomain lipid environment. J Lipid Res 56:2322–2336. https://doi.org/10.1194/jlr.M063040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Legros N, Pohlentz G, Steil D et al (2018) Membrane assembly of Shiga toxin glycosphingolipid receptors and toxin refractiveness of MDCK II epithelial cells. J Lipid Res 59:1383–1401. https://doi.org/10.1194/jlr.M083048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Varki A (2007) Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 446:1023–1029. https://doi.org/10.1038/nature05816

    Article  CAS  PubMed  Google Scholar 

  34. Levery SB (2005) Glycosphingolipid structural analysis and glycosphingolipidomics. Methods Enzymol 405:300–369. https://doi.org/10.1016/S0076-6879(05)05012-3.

    Article  CAS  PubMed  Google Scholar 

  35. Ho MY, Yu AL, Yu J (2017) Glycosphingolipid dynamics in human embryonic stem cell and cancer: their characterization and biomedical implications. Glycoconj J 34:765–777. https://doi.org/10.1007/s10719-016-9715-x

    Article  CAS  PubMed  Google Scholar 

  36. Sarbu M, Zamfir AD (2018) Modern separation techniques coupled to high performance mass spectrometry for glycolipid analysis. Electrophoresis 39:1155–1170. https://doi.org/10.1002/elps.201700461

    Article  CAS  PubMed  Google Scholar 

  37. Müthing J, Distler U (2010) Advances on the compositional analysis of glycosphingolipids combining thin-layer chromatography with mass spectrometry. Mass Spectrom Rev 29:425–479. https://doi.org/10.1002/mas.20253

    Article  CAS  PubMed  Google Scholar 

  38. Meisen I, Mormann M, Müthing J (2011) Thin-layer chromatography, overlay technique and mass spectrometry: a versatile triad advancing glycosphingolipidomics. Biochim Biophys Acta 1811:875–896. https://doi.org/10.1016/j.bbalip.2011.04.006

    Article  CAS  PubMed  Google Scholar 

  39. Saito T, Hakomori SI (1971) Quantitative isolation of total glycosphingolipids from animal cells. J Lipid Res 12:257–259

    Article  CAS  Google Scholar 

  40. Suzuki A, Miyazaki M, Matsuda J et al (2011) High-performance thin-layer chromatography/mass spectrometry for the analysis of neutral glycosphingolipids. Biochim Biophys Acta 1811:861–874. https://doi.org/10.1016/bbalip.2011.06.018

    Article  CAS  PubMed  Google Scholar 

  41. Fuchs B (2012) Analysis of phospholipids and glycolipids by thin-layer chromatography-matrix assisted laser desorption and ionization mass spectrometry. J Chromatogr A 1259:62–73. https://doi.org/10.1016/j.chroma.2012.03.068

    Article  CAS  PubMed  Google Scholar 

  42. Kouzel IU, Pirkl A, Pohlentz G et al (2014) Progress in detection and structural characterization of glycosphingolipids in crude lipid extracts by enzymatic phospholipid disintegration combined with thin-layer chromatography immunodetection and IR MALDI mass spectrometry. Anal Chem 86:1215–1222. https://doi.org/10.1021/ac40355696.

    Article  CAS  PubMed  Google Scholar 

  43. Magnani JL, Smith DF, Ginsburg V (1980) Detection of gangliosides that bind cholera toxin: direct binding of 125I-labeled toxin to thin-layer chromatograms. Anal Biochem 109:399–402. https://doi.org/10.1016/0003-2697(80)90667-3

    Article  CAS  PubMed  Google Scholar 

  44. Bethke U, Müthing J, Schauder B et al (1986) An improved semi-quantitative enzyme immunostaining procedure for glycosphingolipid antigens on high performance thin layer chromatograms. J Immunol Methods 89:111–116. https://doi.org/10.1016/0022-1759(86)90038-4

    Article  CAS  PubMed  Google Scholar 

  45. Pohlentz G, Steil D, Rubin D et al (2019) Pectin-derived neoglycolipids: tools for differentiation of Shiga toxin-subtypes and inhibitors of Shiga toxin-mediated cellular injury. Carbohydr Polym 212:323–333. https://doi.org/10.1016/j.carbpol.2019.02.039

    Article  CAS  PubMed  Google Scholar 

  46. He X, Patfield S, Rasooly R et al (2017) Novel monoclonal antibodies against Stx1d and 1e and their use for improving immunoassays. J Immunol Methods 447:52–56. https://doi.org/10.1016/j.jim.2017.04.008

    Article  CAS  PubMed  Google Scholar 

  47. Bai X, Fu S, Zhang J et al (2018) Identification and pathogenomic analysis of an Escherichia coli strain producing a novel Shiga toxin 2 subtype. Sci Rep 8:6756. https://doi.org/10.1038/s41598-018-25233-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hughes AC, Zhang Y, Bai X et al (2019) Structural and functional characterization of Stx2k, a new subtype of Shiga toxin 2. Microorganisms 8:4. https://doi.org/10.3390/microorganisms8010004

    Article  CAS  PubMed Central  Google Scholar 

  49. Yang X, Bai X, Zhang J et al (2020) Escherichia coli strains producing a novel Shiga toxin 2 subtype circulate in China. Int J Med Microbiol 310:151377. https://doi.org/10.1016/j.ijmm.2019.151377

    Article  CAS  PubMed  Google Scholar 

  50. Detzner J, Steil D, Pohlentz G et al (2020) Real-time interaction analysis of Shiga toxins and membrane microdomains of primary human brain microvascular endothelial cells. Glycobiology 30:174–185. https://doi.org/10.1093/glycob/cwz091.

    Article  CAS  PubMed  Google Scholar 

  51. Bethke U, Kniep B, Mühlradt PF (1987) Forssman glycolipid, an antigenic marker for a major subpopulation of macrophages from murine spleen and peripheral lymph nodes. J Immunol 138:4329–4335

    CAS  PubMed  Google Scholar 

  52. Detzner J, Gloerfeld C, Pohlentz G et al (2019) Structural insights into Escherichia coli Shiga toxin (Stx) glycosphingolipid receptors of porcine renal epithelial cells and inhibition of Stx-mediated cellular injury using neoglycolipid-spiked glycovesicles. Microorganisms 7. https://doi.org/10.3390/microorganisms7110582

  53. Domon B, Costello CE (1988) A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J 5:397–440. https://doi.org/10.1007/BF01049915

    Article  CAS  Google Scholar 

  54. Domon B, Costello CE (1988) Structure elucidation of glycosphingolipids and gangliosides using high-performance tandem mass spectrometry. Biochemistry 27:1534–1543. https://doi.org/10.1021/bi00405a021

    Article  CAS  PubMed  Google Scholar 

  55. Hsu FF, Turk J, Stewart ME et al (2002) Structural studies on ceramides as lithiated adducts by low energy collisional-activated dissociation tandem mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom 13:680–695. https://doi.org/10.1016/S1044-0305(02)00362-8

    Article  CAS  PubMed  Google Scholar 

  56. Schwartz R, Kniep B, Müthing J et al (1985) Glycoconjugates of murine tumor lines with different metastatic capacities. II. Diversity of glycolipid composition. Int J Cancer 36:601–607. https://doi.org/10.1002/ijc.2910360514

    Article  CAS  PubMed  Google Scholar 

  57. Skipski VP (1975) Thin-layer chromatography of neutral glycosphingolipids. Methods Enzymol 35:396–425. https://doi.org/10.1016/0076-6879(75)35178-1

    Article  CAS  PubMed  Google Scholar 

  58. Kundu SK (1981) Thin-layer chromatography of neutral glycosphingolipids and gangliosides. Methods Enzymol 72:185–204. https://doi.org/10.1016/s0076-6879(81)72012-3.

    Article  CAS  PubMed  Google Scholar 

  59. Schnaar RL, Needham LK (1994) Thin-layer chromatography of glycosphingolipids. Methods Enzymol 230:371–389. https://doi.org/10.1016/0076-6879(94)30025-9.

    Article  CAS  PubMed  Google Scholar 

  60. Svennerholm L (1956) The quantitative estimation of cerebrosides in nervous tissue. J Neurochem 1:42–53. https://doi.org/10.1111/j.1471-4159.1956.tb12053.x

    Article  CAS  PubMed  Google Scholar 

  61. Nakamura K, Suzuki Y, Goto-Inoue N et al (2006) Structural characterization of neutral glycosphingolipids by thin-layer chromatography coupled to matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight MS/MS. Anal Chem 78:5736–5743. https://doi.org/10.1021/ac0605501

    Article  CAS  PubMed  Google Scholar 

  62. Fuchs B, Süss R, Teuber K et al (2011) Lipid analysis by thin-layer chromatography – a review of the current state. J Chromatogr A 1218:2754–2774. https://doi.org/10.1016/j.chroma.2010.11.066

    Article  CAS  PubMed  Google Scholar 

  63. https://www.cdc.gov/biosafety/publications/bmbl5/BMBL.pdf. Accessed 6 March 2020

  64. https://www.baua.de/DE/Angebote/Rechtstexte-und-Technische-Regeln/Regelwerk/TRBA/TRBA-466.html. Accessed 6 March 2020

  65. Distler U, Hülsewig M, Souady J et al (2008) Matching IR-MALDI-o-TOF mass spectrometry with the TLC overlay binding assay and its clinical application for tracing tumor-associated glycosphingolipids in hepatocellular and pancreatic cancer. Anal Chem 80:1835–1846. https://doi.org/10.1021/ac702071x

    Article  CAS  PubMed  Google Scholar 

  66. Kouzel IU, Soltwisch J, Pohlentz G et al (2017) Infrared MALDI mass spectrometry imaging of TLC-separated glycosphingolipids with emphasis on Shiga toxin receptors isolated from human colon epithelial cells. Int J Mass Spectrom 416:53–60. https://doi.org/10.1016/j.ijms.2016.11.008

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This chapter is dedicated to Prof. Dr. Elizabeth Hounsell, Emeritus Professor of Biological Chemistry at Birkbeck College London, who passed away on 21 February 2020 after a long and serious illness. Liz was a pioneer in the development and application of modern analytical techniques to structure determination of biologically important glycoconjugates. We lost an outstanding scientist and a very dear friend. She will be greatly missed, and we will always keep her in honorable memory. This work was supported by a grant from the German Research Foundation (DFG), grant number MU845/7-1 with reference number 404813761 (J.M.). We thank Dagmar Mense and Nikola Skutta for distinguished technical assistance. We are deeply indebted to Prof. em. Dr. Dr. h. c. Helge Karch for his intellectual leadership and long-lasting support of our scientific projects over so many years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Müthing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Detzner, J., Pohlentz, G., Müthing, J. (2021). Thin-Layer Chromatography in Structure and Recognition Studies of Shiga Toxin Glycosphingolipid Receptors. In: Schüller, S., Bielaszewska, M. (eds) Shiga Toxin-Producing E. coli . Methods in Molecular Biology, vol 2291. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1339-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1339-9_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1338-2

  • Online ISBN: 978-1-0716-1339-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics