Skip to main content

Centromere Engineering as an Emerging Tool for Haploid Plant Production: Advances and Challenges

  • Protocol
  • First Online:
Doubled Haploid Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2289))

Abstract

Haploid production is of great importance in plant breeding programs. Doubled haploid technology accelerates the generation of inbred lines with homozygosity in all loci in a single year. Haploids can be induced in vitro via cultivating the haploid gametes or in vivo through inter- and intraspecific hybridization. Haploid induction through centromere engineering is a novel system that is theoretically applicable to many plant species. The present review chapter discusses the proposed molecular mechanisms of selective chromosome elimination in early embryogenesis and the effects of kinetochore component modifications on proper chromosome segregation. Finally, the advantages and limitations of the CENH3-mediated haploidization approach and its applications are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dwivedi SL et al (2015) Haploids: constraints and opportunities in plant breeding. Biotechnol Adv 33(6 Pt 1):812–829

    Article  PubMed  Google Scholar 

  2. Ren J et al (2017) Novel technologies in doubled haploid line development. Plant Biotechnol J 15(11):1361–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Segui-Simarro JM (2015) Editorial: Doubled haploidy in model and recalcitrant species. Front Plant Sci 6:1175

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gilles LM et al (2017) Haploid induction in plants. Curr Biol 27(20):R1095–r1097

    Article  CAS  PubMed  Google Scholar 

  5. Kalinowska K et al (2019) State-of-the-art and novel developments of in vivo haploid technologies. Theor Appl Genet 132(3):593–605

    Article  CAS  PubMed  Google Scholar 

  6. Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of datura. Nature 204(4957):497–497

    Article  Google Scholar 

  7. Kasha KJ, Maluszynski M (2003) Production of doubled haploids in crop plants. An introduction. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Springer, Dordrecht, pp 1–4

    Google Scholar 

  8. Ishii T, Karimi-Ashtiyani R, Houben A (2016) Haploidization via chromosome elimination: means and mechanisms. Annu Rev Plant Biol 67:421–438

    Article  CAS  PubMed  Google Scholar 

  9. Bashir T et al (2018) Effect of hybridization on somatic mutations and genomic rearrangements in plants. Int J Mol Sci 19(12)

    Google Scholar 

  10. Abbott R et al (2013) Hybridization and speciation. J Evol Biol 26(2):229–246

    Article  CAS  PubMed  Google Scholar 

  11. Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588

    Article  CAS  PubMed  Google Scholar 

  12. Kerbs B et al (2017) The potential role of hybridization in diversification and speciation in an insular plant lineage: insights from synthetic interspecific hybrids. AoB Plants 9(5):plx043

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen ZJ (2013) Genomic and epigenetic insights into the molecular bases of heterosis. Nat Rev Genet 14(7):471–482

    Article  CAS  PubMed  Google Scholar 

  14. Kasha KJ, Kao KN (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225(5235):874–876

    Article  CAS  PubMed  Google Scholar 

  15. Subrahmanyam NC, Kasha KJ (1973) Selective chromosomal elimination during haploid formation in barley following interspecific hybridization. Chromosoma 42(2):111–125

    Article  Google Scholar 

  16. Gernand D et al (2005) Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation. Plant Cell 17(9):2431–2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Devaux P (2003) The Hordeum bulbosum (L.) method. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Springer, Dordrecht, pp 15–19

    Chapter  Google Scholar 

  18. Ravi M, Chan SWL (2013) Centromere-mediated generation of haploid plants. In: Jiang J, Birchler JA (eds) Plant centromere biology. Wiley, Berlin, pp 169–181

    Chapter  Google Scholar 

  19. Finch RA (1983) Tissue-specific elimination of alternative whole parental genomes in one barley hybrid. Chromosoma 88(5):386–393

    Article  Google Scholar 

  20. Musacchio A, Desai A (2017) A molecular view of kinetochore assembly and function. Biology 6(1)

    Google Scholar 

  21. Ingouff M et al (2010) Zygotic resetting of the HISTONE 3 variant repertoire participates in epigenetic reprogramming in Arabidopsis. Curr Biol 20(23):2137–2143

    Article  CAS  PubMed  Google Scholar 

  22. Fu S et al (2018) Maternal doubled haploid production in interploidy hybridization between Brassica napus and Brassica allooctaploids. Planta 247(1):113–125

    Article  CAS  PubMed  Google Scholar 

  23. Gupta SB (1969) Duration of mitotic cycle and regulation of DNA replication in nicotiana plumbaginifolia and a hybrid derivative of N. tabacum showing chromosome instability. Can J Genet Cytol 11(1):133–142

    Article  Google Scholar 

  24. Sanei M et al (2011) Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci U S A 108(33):E498–E505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Laurie DA, Bennett MD (1989) The timing of chromosome elimination in hexaploid wheat × maize crosses. Genome 32(6):953–961

    Article  Google Scholar 

  26. Bennett MD, Finch RA, Barclay IR (1976) The time rate and mechanism of chromosome elimination in Hordeum hybrids. Chromosoma 54(2):175–200

    Article  Google Scholar 

  27. Schwarzacher-Robinson T et al (1987) Genotypic control of centromere positions of parental genomes in Hordeum × Secale hybrid metaphases. J Cell Sci 87(2):291

    Article  Google Scholar 

  28. Ravi M, Chan SW (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464(7288):615–618

    Article  CAS  PubMed  Google Scholar 

  29. Wang G, Zhang X, Jin W (2009) An overview of plant centromeres. J Genet Genomics 36(9):529–537

    Article  CAS  PubMed  Google Scholar 

  30. Potapova T, Gorbsky GJ (2017) The consequences of chromosome segregation errors in mitosis and meiosis. Biology 6(1)

    Google Scholar 

  31. Zamariola L et al (2014) Chromosome segregation in plant meiosis. Front Plant Sci 5:279

    Article  PubMed  PubMed Central  Google Scholar 

  32. Oliveira LC, Torres GA (2018) Plant centromeres: genetics, epigenetics and evolution. Mol Biol Rep 45(5):1491–1497

    Article  CAS  PubMed  Google Scholar 

  33. Sharma AB et al (2019) Centromeric and ectopic assembly of CENP-A chromatin in health and cancer: old marks and new tracks. Nucleic Acids Res 47(3):1051–1069

    Article  CAS  PubMed  Google Scholar 

  34. Lermontova I et al (2015) Centromeric chromatin and its dynamics in plants. Plant J 83(1):4–17

    Article  CAS  PubMed  Google Scholar 

  35. Chen Y et al (2000) The N terminus of the centromere H3-like protein Cse4p performs an essential function distinct from that of the histone fold domain. Mol Cell Biol 20(18):7037–7048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gonzalez M et al (2014) Ectopic centromere nucleation by CENP-A in fission yeast. Genetics 198(4):1433–1446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Lermontova I et al (2011) Knockdown of CENH3 in Arabidopsis reduces mitotic divisions and causes sterility by disturbed meiotic chromosome segregation. Plant J 68(1):40–50

    Article  CAS  PubMed  Google Scholar 

  38. Ravi M et al (2011) Meiosis-specific loading of the centromere-specific histone CENH3 in Arabidopsis thaliana. PLoS Genet 7(6):e1002121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maheshwari S et al (2015) Naturally occurring differences in CENH3 affect chromosome segregation in zygotic mitosis of hybrids. PLoS Genet 11(1):e1004970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Britt AB, Kuppu S (2016) Cenh3: an emerging player in haploid induction technology. Front Plant Sci 7:357

    Article  PubMed  PubMed Central  Google Scholar 

  41. Malik HS, Henikoff S (2003) Phylogenomics of the nucleosome. Nat Struct Biol 10(11):882–891

    Article  CAS  PubMed  Google Scholar 

  42. Morey L et al (2004) The histone fold domain of Cse4 is sufficient for CEN targeting and propagation of active centromeres in budding yeast. Eukaryot Cell 3(6):1533–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lermontova I et al (2006) Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain. Plant Cell 18(10):2443–2451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vermaak D, Hayden HS, Henikoff S (2002) Centromere targeting element within the histone fold domain of Cid. Mol Cell Biol 22(21):7553–7561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Black BE et al (2004) Structural determinants for generating centromeric chromatin. Nature 430(6999):578–582

    Article  CAS  PubMed  Google Scholar 

  46. Watts A, Kumar V, Bhat SR (2016) Centromeric histone H3 protein: from basic study to plant breeding applications. J Plant Biochem Biotechnol 25(4):339–348

    Article  CAS  Google Scholar 

  47. Talbert PB et al (2002) Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14(5):1053–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Maehara K, Takahashi K, Saitoh S (2010) CENP-A reduction induces a p53-dependent cellular senescence response to protect cells from executing defective mitoses. Mol Cell Biol 30(9):2090–2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Raychaudhuri N et al (2012) Transgenerational propagation and quantitative maintenance of paternal centromeres depends on Cid/Cenp-A presence in Drosophila sperm. PLoS Biol 10(12):e1001434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Caussinus E, Kanca O, Affolter M (2011) Fluorescent fusion protein knockout mediated by anti-GFP nanobody. Nat Struct Mol Biol 19(1):117–121

    Article  PubMed  CAS  Google Scholar 

  51. Heun P et al (2006) Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev Cell 10(3):303–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hewawasam G et al (2010) Psh1 is an E3 ubiquitin ligase that targets the centromeric histone variant Cse4. Mol Cell 40(3):444–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ranjitkar P et al (2010) An E3 ubiquitin ligase prevents ectopic localization of the centromeric histone H3 variant via the centromere targeting domain. Mol Cell 40(3):455–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Collins KA, Furuyama S, Biggins S (2004) Proteolysis contributes to the exclusive centromere localization of the yeast Cse4/CENP-A histone H3 variant. Curr Biol 14(21):1968–1972

    Article  CAS  PubMed  Google Scholar 

  55. Ravi M et al (2010) The rapidly evolving centromere-specific histone has stringent functional requirements in Arabidopsis thaliana. Genetics 186(2):461–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Feng C et al (2020) The deposition of CENH3 in maize is stringently regulated. Plant J 102(1):6–17

    Article  CAS  PubMed  Google Scholar 

  57. Allshire RC, Karpen GH (2008) Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet 9(12):923–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stellfox ME, Bailey AO, Foltz DR (2013) Putting CENP-A in its place. Cell Mol Life Sci 70(3):387–406

    Article  CAS  PubMed  Google Scholar 

  59. Talbert PB, Bryson TD, Henikoff S (2004) Adaptive evolution of centromere proteins in plants and animals. J Biol 3(4):18

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ogura Y et al (2004) Characterization of a CENP-C homolog in Arabidopsis thaliana. Genes Genet Syst 79(3):139–144

    Article  CAS  PubMed  Google Scholar 

  61. Kato H et al (2013) A conserved mechanism for centromeric nucleosome recognition by centromere protein CENP-C. Science 340(6136):1110–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dawe RK et al (1999) A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore. Plant Cell 11(7):1227–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ishii T et al (2020) Unequal contribution of two paralogous centromeric histones to function the cowpea centromere. bioRxiv:2020.01.07.897074

    Google Scholar 

  64. Marques A et al (2016) Restructuring of holocentric centromeres during meiosis in the plant Rhynchospora pubera. Genetics 204(2):555–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kwon M-S et al (2007) CENP-C is involved in chromosome segregation, mitotic checkpoint function, and kinetochore assembly. Mol Biol Cell 18(6):2155–2168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Howman EV et al (2000) Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc Natl Acad Sci U S A 97(3):1148–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Du Y, Topp CN, Dawe RK (2010) DNA binding of centromere protein C (CENPC) is stabilized by single-stranded RNA. PLoS Genet 6(2):e1000835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Hori T et al (2017) Association of M18BP1/KNL2 with CENP-A nucleosome is essential for centromere formation in non-mammalian vertebrates. Dev Cell 42(2):181–189.e3

    Article  CAS  PubMed  Google Scholar 

  69. Fujita Y et al (2007) Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta, and M18BP1. Dev Cell 12(1):17–30

    Article  CAS  PubMed  Google Scholar 

  70. Dambacher F et al (2015) Reducing proactive aggression through non-invasive brain stimulation. Soc Cogn Affect Neurosci 10(10):1303–1309

    Article  PubMed  PubMed Central  Google Scholar 

  71. Moree B et al (2011) CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly. J Cell Biol 194(6):855–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Maddox PS et al (2007) Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin. J Cell Biol 176(6):757–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lermontova I et al (2013) Arabidopsis kinetochore null2 is an upstream component for centromeric histone H3 variant cenH3 deposition at centromeres. Plant Cell 25(9):3389–3404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sandmann M et al (2017) Targeting of Arabidopsis KNL2 to centromeres depends on the conserved CENPC-k motif in its C terminus. Plant Cell 29(1):144–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kral L (2015) Possible identification of CENP-C in fish and the presence of the CENP-C motif in M18BP1 of vertebrates. F1000 Res 4:474–474

    Article  CAS  Google Scholar 

  76. Dambacher S et al (2012) CENP-C facilitates the recruitment of M18BP1 to centromeric chromatin. Nucleus 3(1):101–110

    Article  PubMed  PubMed Central  Google Scholar 

  77. French BT, Straight AF (2019) CDK phosphorylation of Xenopus laevis M18BP1 promotes its metaphase centromere localization. EMBO J 38(4)

    Google Scholar 

  78. Batzenschlager M et al (2015) Arabidopsis MZT1 homologs GIP1 and GIP2 are essential for centromere architecture. Proc Natl Acad Sci 112(28):8656–8660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Le Goff S et al (2020) The H3 histone chaperone NASPSIM3 escorts CenH3 in Arabidopsis. Plant J 101(1):71–86

    Article  PubMed  CAS  Google Scholar 

  80. Wang N, Dawe RK (2018) Centromere size and its relationship to haploid formation in plants. Mol Plant 11(3):398–406

    Article  CAS  PubMed  Google Scholar 

  81. Pickering RA (1985) Partial control of chromosome elimination by temperature in immature embryos of Hordeum vulgare L. x H. bulbosum L. Euphytica 34(3):869–874

    Article  Google Scholar 

  82. Kumar SV, Wigge PA (2010) H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140(1):136–147

    Article  CAS  PubMed  Google Scholar 

  83. Comai L (2014) Genome elimination: translating basic research into a future tool for plant breeding. PLoS Biol 12(6):e1001876

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kelliher T et al (2016) Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize. Front Plant Sci 7:414–414

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ravi M et al (2014) A haploid genetics toolbox for Arabidopsis thaliana. Nat Commun 5:5334

    Article  CAS  PubMed  Google Scholar 

  86. Karimi-Ashtiyani R et al (2015) Point mutation impairs centromeric CENH3 loading and induces haploid plants. Proc Natl Acad Sci U S A 112(36):11211–11216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ishii T et al (2015) The differential loading of two barley CENH3 variants into distinct centromeric substructures is cell type- and development-specific. Chromosom Res 23(2):277–284

    Article  CAS  Google Scholar 

  88. Van der Veken J et al (2019) Cichorium intybus L. × Cicerbita alpina Walbr.: doubled haploid chicory induction and CENH3 characterization. Euphytica 215(7):134

    Article  CAS  Google Scholar 

  89. Kuppu S et al (2015) Point mutations in centromeric histone induce post-zygotic incompatibility and uniparental inheritance. PLoS Genet 11(9):e1005494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Kuppu S et al (2020) A variety of changes, including CRISPR/Cas9-mediated deletions, in CENH3 lead to haploid induction on outcrossing. Plant Biotechnol J 18:2068–2080

    Article  CAS  PubMed Central  Google Scholar 

  91. Woo JW et al (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33(11):1162–1164

    Article  CAS  PubMed  Google Scholar 

  92. Coe EH (1959) A line of maize with high haploid frequency. Am Nat 93(873):381–382

    Article  Google Scholar 

  93. Prigge V et al (2012) New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize. Genetics 190(2):781–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang S, Jin W, Wang K (2019) Centromere histone H3- and phospholipase-mediated haploid induction in plants. Plant Methods 15(1):42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kelliher T et al (2017) MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542(7639):105–109

    Article  CAS  PubMed  Google Scholar 

  96. Gilles LM et al (2017) Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J 36(6):707–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liu C et al (2017) A 4-bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in Maize. Mol Plant 10(3):520–522

    Article  CAS  PubMed  Google Scholar 

  98. Yao L et al (2018) OsMATL mutation induces haploid seed formation in indica rice. Nat Plants 4(8):530–533

    Article  CAS  PubMed  Google Scholar 

  99. Zhong Y et al (2019) Mutation of ZmDMP enhances haploid induction in maize. Nat Plants 5(6):575–580

    Article  PubMed  Google Scholar 

  100. Khanday I et al (2019) A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565(7737):91–95

    Article  CAS  PubMed  Google Scholar 

  101. Ron M et al (2014) Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol 166(2):455–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ron M, Kuppu S, Britt AB (2019) Cenh3 deletion mutants. Patent WO 2019/136417A2

    Google Scholar 

  103. Camp RHMOD et al (2017) Method for the production of haploid and subsequent doubled haploid plants field of the invention. Patent WO 2017/058022A1

    Google Scholar 

  104. Van Dun CMP, Lelivelt CLC, Movahedi S (2017) Non-transgenic haploid inducer lines in cucurbits. Patent WO 2017/081011

    Google Scholar 

  105. Dirks R et al (2009) Reverse breeding: a novel breeding approach based on engineered meiosis. Plant Biotechnol J 7(9):837–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wijnker E et al (2014) Hybrid recreation by reverse breeding in Arabidopsis thaliana. Nat Protoc 9(4):761–772

    Article  CAS  PubMed  Google Scholar 

  107. Spillane C, Curtis MD, Grossniklaus U (2004) Apomixis technology development-virgin births in farmers’ fields? Nat Biotechnol 22(6):687–691

    Article  CAS  PubMed  Google Scholar 

  108. Mieulet D et al (2016) Turning rice meiosis into mitosis. Cell Res 26(11):1242–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. d’Erfurth I et al (2009) Turning meiosis into mitosis. PLoS Biol 7(6):e1000124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Marimuthu MP et al (2011) Synthetic clonal reproduction through seeds. Science 331(6019):876

    Article  CAS  PubMed  Google Scholar 

  111. Kelliher T et al (2019) One-step genome editing of elite crop germplasm during haploid induction. Nat Biotechnol 37(3):287–292

    Article  CAS  PubMed  Google Scholar 

  112. Wang B et al (2019) Development of a haploid-inducer mediated genome editing system for accelerating maize breeding. Mol Plant 12(4):597–602

    Article  CAS  PubMed  Google Scholar 

  113. Cortes-Silva N et al (2020) CenH3-Independent kinetochore assembly in Lepidoptera requires CCAN, including CENP-T. Curr Biol 30(4):561–572.e10

    Article  CAS  PubMed  Google Scholar 

  114. Drinnenberg IA et al (2014) Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. elife 3

    Google Scholar 

Download references

Acknowledgments

The author is very grateful to Dr. Ali Mohammad Banaei-Moghaddam, Institute of Biochemistry and Biophysics (IBB), University of Tehran, for valuable suggestions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raheleh Karimi-Ashtiyani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Karimi-Ashtiyani, R. (2021). Centromere Engineering as an Emerging Tool for Haploid Plant Production: Advances and Challenges. In: Segui-Simarro, J.M. (eds) Doubled Haploid Technology. Methods in Molecular Biology, vol 2289. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1331-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1331-3_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1330-6

  • Online ISBN: 978-1-0716-1331-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics