Skip to main content

Oligoclonal Bands: Isoelectric Focusing and Immunoblotting, and Determination of κ Free Light Chains in the Cerebrospinal Fluid

  • Protocol
  • First Online:
Cerebrospinal Fluid Biomarkers

Part of the book series: Neuromethods ((NM,volume 168))

  • 472 Accesses

Abstract

A variety of inflammatory diseases of the central nervous system ranging from an autoimmune to infectious pathophysiology are characterized by intrathecal B cell activity. Immunoglobulins (Ig) and free light chains (FLC) which are both secreted by terminally differentiated B cells can be detected in the cerebrospinal fluid (CSF). As these proteins are not only present in the CSF in case of intrathecal inflammation, but also derive from blood by diffusion across the blood–CSF barrier, methods for the detection of an intrathecal synthesis needs to take this into account.

For the determination of an intrathecal IgG synthesis, isoelectric focusing followed by immunoblotting is the gold standard. This technique reveals oligoclonal bands (OCB) and depends on comparing paired CSF and blood samples of each individual patient. An intrathecal IgG synthesis is present if OCB are detected in CSF without corresponding bands in serum. For the determination of an intrathecal κ-FLC synthesis, first κ-FLC concentrations are measured in CSF and serum, usually by nephelometry using antibodies against κ-FLC-specific epitopes, and then referred to an upper normal limit. For this comparison, different approaches can be applied, among others the calculation of the κ-FLC index.

In this chapter, we provide background information on OCB and κ-FLC, describe the technology used for their determination, discuss their applications in clinical practice and how to interpret the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Reiber H, Peter JB (2001) Cerebrospinal fluid analysis: disease-related data patterns and evaluation programs. J Neurol Sci 184(2):101–122

    Article  CAS  PubMed  Google Scholar 

  2. Deisenhammer F, Bartos A, Egg R, Gilhus NE, Giovannoni G, Rauer S et al (2006) Guidelines on routine cerebrospinal fluid analysis. Report from an EFNS task force. Eur J Neurol 13(9):913–922

    Article  CAS  PubMed  Google Scholar 

  3. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G et al (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17(2):162–173

    Article  PubMed  Google Scholar 

  4. Reiber H (2003) Proteins in cerebrospinal fluid and blood: barriers, CSF flow rate and source-related dynamics. Restor Neurol Neurosci 21(3–4):79–96

    CAS  PubMed  Google Scholar 

  5. Link H, Tibbling G (1977) Principles of albumin and IgG analyses in neurological disorders. III. Evaluation of IgG synthesis within the central nervous system in multiple sclerosis. Scand J Clin Lab Invest 37(5):397–401

    Article  CAS  PubMed  Google Scholar 

  6. Reiber H (1994) Flow rate of cerebrospinal fluid (CSF)—a concept common to normal blood-CSF barrier function and to dysfunction in neurological diseases. J Neurol Sci 122(2):189–203

    Article  CAS  PubMed  Google Scholar 

  7. Auer M, Hegen H, Zeileis A, Deisenhammer F (2016) Quantitation of intrathecal immunoglobulin synthesis—a new empirical formula. Eur J Neurol 23(4):713–721

    Article  CAS  PubMed  Google Scholar 

  8. Freedman MS, Thompson EJ, Deisenhammer F, Giovannoni G, Grimsley G, Keir G et al (2005) Recommended standard of cerebrospinal fluid analysis in the diagnosis of multiple sclerosis: a consensus statement. Arch Neurol 62:865–870

    Article  PubMed  Google Scholar 

  9. Abbas AK, Lichtman AH, Pillai S Cellular and molecular immunology, 6th edn. Saunders Elsevier, Philadelphia

    Google Scholar 

  10. Lange C (1912) Die Ausflockung kolloidalen Goldes durch Zerebrospinalflüssigheit bei luetischen Affektionen des Zentralnervensystems. Z Chemother 1:44–78

    CAS  Google Scholar 

  11. Kabat EM, Moore DH, Landow H (1942) An electrophoretic study of the protein components in cerebrospinal fluid and their relationship to the serum proteins. J Clin Invest 21(5):571–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Katzenelbogen S (1935) The cerebrospinal fluid and its relation to the blood. John Hopkins, Baltimore

    Google Scholar 

  13. Frick E (1959) [Immunophoretic studies on cerebrospinal fluid]. Klin Wochenschr. 37(12):645–651

    Google Scholar 

  14. Link H (1967) Immunoglobulin G and low molecular weight proteins in human cerebrospinal fluid. Chemical and immunological characterisation with special reference to multiple sclerosis. Acta Neurol Scand 43(Suppl 28):1–136

    Google Scholar 

  15. Delmotte P (1972) [Comparative results of agar electrophoresis and electrofocalization examination of gamma globulins of the cerebrospinal fluid]. Acta Neurol Belg. 72(4):226–234

    Google Scholar 

  16. Walker RW, Keir G, Johnson MH, Thompson EJ (1983) A rapid method for detecting oligoclonal IgG in unconcentrated CSF, by agarose isoelectric focusing, transfer to cellulose nitrate and immunoperoxidase staining. J Neuroimmunol 4(2):141–148

    Article  CAS  PubMed  Google Scholar 

  17. Brasher MD, Thorpe R (1998) Isoelectric focusing. In: Delves PJ, Roitt IM, eds Encyclopedia of immunology. 2nd ed.

    Google Scholar 

  18. Andersson M, Alvarez-Cermeño J, Bernardi G, Cogato I, Fredman P, Frederiksen J et al (1994) Cerebrospinal fluid in the diagnosis of multiple sclerosis: a consensus report. J Neurol Neurosurg Psychiatry 57(8):897–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kostulas VK, Link H, Lefvert AK (1987) Oligoclonal IgG bands in cerebrospinal fluid. Principles for demonstration and interpretation based on findings in 1114 neurological patients. Arch Neurol 44(10):1041–1044

    Article  CAS  PubMed  Google Scholar 

  20. Ohman S, Ernerudh J, Forsberg P, Henriksson A, von Schenck H, Vrethem M (1992) Comparison of seven formulae and isoelectrofocusing for determination of intrathecally produced IgG in neurological diseases. Ann Clin Biochem 29(Pt 4):405–410

    Article  PubMed  Google Scholar 

  21. McLean BN, Luxton RW, Thompson EJ (1990) A study of immunoglobulin G in the cerebrospinal fluid of 1007 patients with suspected neurological disease using isoelectric focusing and the Log IgG-index. A comparison and diagnostic applications. Brain 113(Pt 5):1269–1289

    Article  PubMed  Google Scholar 

  22. Haghighi S, Andersen O, Rosengren L, Bergström T, Wahlström J, Nilsson S (2000) Incidence of CSF abnormalities in siblings of multiple sclerosis patients and unrelated controls. J Neurol 247(8):616–622

    Article  CAS  PubMed  Google Scholar 

  23. Hegen H, Auer M, Zeileis A, Deisenhammer F (2016) Upper reference limits for cerebrospinal fluid total protein and albumin quotient based on a large cohort of control patients: implications for increased clinical specificity. Clin Chem Lab Med 54(2):285–292

    Article  CAS  PubMed  Google Scholar 

  24. Davies G, Keir G, Thompson EJ, Giovannoni G (2003) The clinical significance of an intrathecal monoclonal immunoglobulin band: a follow-up study. Neurology 60(7):1163–1166

    Article  PubMed  Google Scholar 

  25. Bourahoui A, de Sèze J, Guttierez R, Onraed B, Hennache B, Ferriby D et al (2004) CSF isoelectrofocusing in a large cohort of MS and other neurological diseases. Eur J Neurol 11(8):525–529

    Article  CAS  PubMed  Google Scholar 

  26. Compston A, Coles A (2002) Multiple sclerosis. Lancet 359(9313):1221–1231

    Article  PubMed  Google Scholar 

  27. Aboul-Enein F, Seifert-Held T, Mader S, Kuenz B, Lutterotti A, Rauschka H et al (2013) Neuromyelitis optica in Austria in 2011: to bridge the gap between neuroepidemiological research and practice in a study population of 8.4 million people. PLoS One 8(11):e79649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jarius S, Paul F, Franciotta D, Ruprecht K, Ringelstein M, Bergamaschi R et al (2011) Cerebrospinal fluid findings in aquaporin-4 antibody positive neuromyelitis optica: results from 211 lumbar punctures. J Neurol Sci 306(1–2):82–90

    Article  CAS  PubMed  Google Scholar 

  29. Menge T, Hemmer B, Nessler S, Wiendl H, Neuhaus O, Hartung H-P et al (2005) Acute disseminated encephalomyelitis: an update. Arch Neurol Am Med Assoc 62(11):1673–1680

    Article  Google Scholar 

  30. Burgoon MP, Hammack BN, Owens GP, Maybach AL, Eikelenboom MJ, Gilden DH (2003) Oligoclonal immunoglobulins in cerebrospinal fluid during varicella zoster virus (VZV) vasculopathy are directed against VZV. Ann Neurol 54(4):459–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Link H, Huang Y-M (2006) Oligoclonal bands in multiple sclerosis cerebrospinal fluid: an update on methodology and clinical usefulness. J Neuroimmunol 180(1–2):17–28

    Article  CAS  PubMed  Google Scholar 

  32. Sellebjerg F, Christiansen M (1996) Qualitative assessment of intrathecal IgG synthesis by isoelectric focusing and immunodetection: interlaboratory reproducibility and interobserver agreement. Scand J Clin Lab Invest 56(2):135–143

    Article  CAS  PubMed  Google Scholar 

  33. Sellebjerg F, Christiansen M, Rasmussen LS, Jaliachvili I, Nielsen PM, Frederiksen JL (1996) The cerebrospinal fluid in multiple sclerosis. Quantitative assessment of intrathecal immunoglobulin synthesis by empirical formulae. Eur J Neurol 3:548–559

    Article  Google Scholar 

  34. Hegen H, Milosavljevic D, Schnabl C, Manowiecka A, Walde J, Deisenhammer F et al (2018) Cerebrospinal fluid free light chains as diagnostic biomarker in neuroborreliosis. Clin Chem Lab Med 56:1383

    Article  CAS  PubMed  Google Scholar 

  35. Teunissen CE, Petzold A, Bennett JL, Berven FS, Brundin L, Comabella M et al (2009) A consensus protocol for the standardization of cerebrospinal fluid collection and biobanking. Neurology 73(22):1914–1922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gislefoss RE, Grimsrud TK, Mørkrid L (2009) Stability of selected serum proteins after long-term storage in the Janus Serum Bank. Clin Chem Lab Med 47(5):596–603

    Article  CAS  PubMed  Google Scholar 

  37. Keir G, Luxton RW, Thompson EJ (1990) Isoelectric focusing of cerebrospinal fluid immunoglobulin G: an annotated update. Ann Clin Biochem 27(Pt 5):436–443

    Article  CAS  PubMed  Google Scholar 

  38. Guo Y, Li X, Fang Y (1998) The effects of electroendosmosis in agarose electrophoresis. Electrophoresis 19(8–9):1311–1313

    Article  CAS  PubMed  Google Scholar 

  39. Herbert B (2005) Some practices and pitfalls of sample preparation for isoelectric focusing in proteomics. In: Garfin D, Ahuja S, eds. Handbook of isoelectric focusing and proteomics. pp 147–164

    Google Scholar 

  40. Nakano T, Matsui M, Inoue I, Awata T, Katayama S, Murakoshi T (2011) Free immunoglobulin light chain: its biology and implications in diseases. Clin Chim Acta 412(11–12):843–849

    Article  CAS  PubMed  Google Scholar 

  41. Ramsden DB (2017) Multiple sclerosis: assay of free immunoglobulin light chains. Ann Clin Biochem 54(1):5–13

    Article  CAS  PubMed  Google Scholar 

  42. Jones HB (1847) Chemical pathology. Lancet 2:88–92

    Article  Google Scholar 

  43. Jenner E (2014) Serum free light chains in clinical laboratory diagnostics. Clin Chim Acta 427:15–20

    Article  CAS  PubMed  Google Scholar 

  44. Bradwell AR, Carr-Smith HD, Mead GP, Tang LX, Showell PJ, Drayson MT et al (2001) Highly sensitive, automated immunoassay for immunoglobulin free light chains in serum and urine. Clin Chem 47(4):673–680

    Article  CAS  PubMed  Google Scholar 

  45. Te Velthuis H, Knop I, Stam P, van den Broek M, Bos HK, Hol S et al (2011) N latex FLC—new monoclonal high-performance assays for the determination of free light chain kappa and lambda. Clin Chem Lab Med 49(8):1323–1332

    Article  CAS  PubMed  Google Scholar 

  46. Dispenzieri A, Kyle R, Merlini G, Miguel JS, Ludwig H, Hajek R et al (2009) International Myeloma Working Group guidelines for serum-free light chain analysis in multiple myeloma and related disorders. Leukemia 23:215–224

    Article  CAS  PubMed  Google Scholar 

  47. Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos M-V et al (2014) International myeloma working group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 15(12):e538–e548

    Article  PubMed  Google Scholar 

  48. Aggarwal R, Sequeira W, Kokebie R, Mikolaitis RA, Fogg L, Finnegan A et al (2011) Serum free light chains as biomarkers for systemic lupus erythematosus disease activity. Arthritis Care Res 63(6):891–898

    Article  CAS  Google Scholar 

  49. Gottenberg J-E, Aucouturier F, Goetz J, Sordet C, Jahn I, Busson M et al (2007) Serum immunoglobulin free light chain assessment in rheumatoid arthritis and primary Sjogren’s syndrome. Ann Rheum Dis 66(1):23–27

    Article  CAS  PubMed  Google Scholar 

  50. Hassan-Smith G, Durant L, Tsentemeidou A, Assi LK, Faint JM, Kalra S et al (2014) High sensitivity and specificity of elevated cerebrospinal fluid kappa free light chains in suspected multiple sclerosis. J Neuroimmunol 276(1–2):175–179

    Article  CAS  PubMed  Google Scholar 

  51. Makshakov G, Nazarov V, Kochetova O, Surkova E, Lapin S, Evdoshenko E (2015) Diagnostic and prognostic value of the cerebrospinal fluid concentration of immunoglobulin free light chains in clinically isolated syndrome with conversion to multiple sclerosis. PLoS One 10(11):e0143375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Senel M, Tumani H, Lauda F, Presslauer S, Mojib-Yezdani R, Otto M et al (2014) Cerebrospinal fluid immunoglobulin kappa light chain in clinically isolated syndrome and multiple sclerosis. PLoS One 9(4):e88680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Fischer C, Arneth B, Koehler J, Lotz J, Lackner KJ (2004) Kappa free light chains in cerebrospinal fluid as markers of intrathecal immunoglobulin synthesis. Clin Chem 50(10):1809–1813

    Article  CAS  PubMed  Google Scholar 

  54. Presslauer S, Milosavljevic D, Brücke T, Bayer P, Hübl W, Hübl W (2008) Elevated levels of kappa free light chains in CSF support the diagnosis of multiple sclerosis. J Neurol 255(10):1508–1514

    Article  CAS  PubMed  Google Scholar 

  55. Presslauer S, Milosavljevic D, Huebl W, Parigger S, Schneider-Koch G, Bruecke T (2014) Kappa free light chains: diagnostic and prognostic relevance in MS and CIS. PLoS One 9(2):e89945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Presslauer S, Milosavljevic D, Huebl W, Aboulenein-Djamshidian F, Krugluger W, Deisenhammer F et al (2016) Validation of kappa free light chains as a diagnostic biomarker in multiple sclerosis and clinically isolated syndrome: a multicenter study. Mult Scler 22(4):502–510

    Article  CAS  PubMed  Google Scholar 

  57. Tate J, Bazeley S, Sykes S, Mollee P (2009) Quantitative serum free light chain assay—analytical issues. Clin Biochem Rev 30(3):131–140

    PubMed  PubMed Central  Google Scholar 

  58. Te Velthuis H, Drayson M, Campbell JP (2016) Measurement of free light chains with assays based on monoclonal antibodies. Clin Chem Lab Med 54(6):1005–1014

    Article  CAS  Google Scholar 

  59. Thomas L (1990) Quantitative determination of plasma proteins by antigen-antibody reactions using nephelometry and turbidimetry. J Lab Med 14:313–320

    Google Scholar 

  60. Katzmann JA, Clark RJ, Abraham RS, Bryant S, Lymp JF, Bradwell AR et al (2002) Serum reference intervals and diagnostic ranges for free kappa and free lambda immunoglobulin light chains: relative sensitivity for detection of monoclonal light chains. Clin Chem 48(9):1437–1444

    Article  CAS  PubMed  Google Scholar 

  61. Leurs C, Twaalfhoven H, Witte BI, van Pesch V, Dujmovic I, Drulovic J et al (2017) Kappa free light chains: an automated alternative to oligoclonal bands for CIS and MS diagnosis? Multiple Scler J 23(S3):591–593

    Google Scholar 

  62. Robson E, Mead G, Bradwell A (2006) To the editor: in reply to Nakano et al. Clin Chem Lab Med 44(5):522–532. Clin Chem Lab Med. 2007;45(2):264–5; authorreply 266–7

    Google Scholar 

  63. Tate JR, Mollee P, Dimeski G, Carter AC, Gill D (2007) Analytical performance of serum free light-chain assay during monitoring of patients with monoclonal light-chain diseases. Clin Chim Acta 376(1–2):30–36

    Article  CAS  PubMed  Google Scholar 

  64. Pretorius CJ, Klingberg S, Tate J, Wilgen U, Ungerer JPJ (2012) Evaluation of the N latex FLC free light chain assay on the Siemens BN analyser: precision, agreement, linearity and variation between reagent lots. Ann Clin Biochem 49(Pt 5):450–455

    Article  CAS  PubMed  Google Scholar 

  65. Jacobs JFM, Hoedemakers RMJ, Teunissen E, van der Molen RG, Te Velthuis H (2012) Effect of sample dilution on two free light chain nephelometric assays. Clin Chim Acta 413(19–20):1708–1709

    Article  CAS  PubMed  Google Scholar 

  66. Palladini G, Russo P, Bosoni T, Verga L, Sarais G, Lavatelli F et al (2009) Identification of amyloidogenic light chains requires the combination of serum-free light chain assay with immunofixation of serum and urine. Clin Chem 55(3):499–504

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Hegen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hegen, H., Deisenhammer, F. (2021). Oligoclonal Bands: Isoelectric Focusing and Immunoblotting, and Determination of κ Free Light Chains in the Cerebrospinal Fluid. In: Teunissen, C.E., Zetterberg, H. (eds) Cerebrospinal Fluid Biomarkers. Neuromethods, vol 168. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1319-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1319-1_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1318-4

  • Online ISBN: 978-1-0716-1319-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics