Skip to main content

Micro-RNA Quantification, Target Gene Identification, and Pathway Analysis

  • Protocol
  • First Online:
RNA Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2284))

Abstract

RNA sequencing has become a powerful tool for profiling the expression level of small RNAs from both solid tissues and liquid biopsies. In conjunction with pathway analysis, it offers exciting possibilities for the identification of disease specific biomarkers. In this chapter, we describe a workflow for processing this type of sequencing data. We start by removing technical sequences (adapters) and by performing quality control, a critical task that is necessary to identify possible issues caused by sample preparation and library sequencing. We then describe read alignment and gene-level abundance estimation. Building on these results, we normalize expression profiles and compute differentially expressed microRNAs between sample groups of interest. We conclude by showing how to employ pathway analysis to identify molecular signatures corresponding to biological processes that are significantly altered by the action for microRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  Google Scholar 

  2. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  Google Scholar 

  3. Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47(D1):D155–D162

    Article  CAS  Google Scholar 

  4. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37(7):766–770

    Article  CAS  Google Scholar 

  5. Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E (2005) Phylogenetic shadowing and computational identification of human microrna genes. Cell 120(1):21–24

    Article  CAS  Google Scholar 

  6. Hayes J, Peruzzi PP, Lawler S (2014) MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 20(8):460–469

    Article  CAS  Google Scholar 

  7. Lee YS, Dutta A (2009) Micrornas in cancer. Annu Rev Pathol Mech Dis 4:199–227

    Article  CAS  Google Scholar 

  8. Ørom UA, Lund AH (2010) Experimental identification of microRNA targets. Gene 451(1–2):1–5

    Article  Google Scholar 

  9. Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K et al (2009) DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res 37(Suppl 2):W273–W276

    Article  CAS  Google Scholar 

  10. Gaidatzis D, van Nimwegen E, Hausser J, Zavolan M (2007) Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics 8(1):69

    Article  Google Scholar 

  11. Betel D, Koppal A, Agius P, Sander C, Leslie C (2010) mirsvr predicted target site scoring method: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 11:R90

    Article  Google Scholar 

  12. Lall S, Grün D, Krek A, Chen K, Wang YL, Dewey CN, Sood P, Colombo T, Bray N, MacMenamin P et al (2006) A genome-wide map of conserved microRNA targets in C. elegans. Current biology 16(5):460–471

    Article  CAS  Google Scholar 

  13. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39(10):1278–1284

    Article  CAS  Google Scholar 

  14. Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I (2006) A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126(6):1203–1217

    Article  CAS  Google Scholar 

  15. Friedman RC, Farh KKH, Burge CB, Bartel DP (2009) Most mammalian mrnas are conserved targets of microRNAs. Genome Res 19(1):92–105

    Article  CAS  Google Scholar 

  16. Alexiou P, Maragkakis M, Papadopoulos GL, Reczko M, Hatzigeorgiou AG (2009) Lost in translation: an assessment and perspective for computational microrna target identification. Bioinformatics 25(23):3049–3055

    Article  CAS  Google Scholar 

  17. Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T, Cui Q (2014) Hmdd v2. 0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res 42(D1):D1070–D1074

    Article  CAS  Google Scholar 

  18. Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y (2009) mir2disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37(Suppl 1):D98–D104

    Article  CAS  Google Scholar 

  19. Ruepp A, Kowarsch A, Schmidl D, Buggenthin F, Brauner B, Dunger I, Fobo G, Frishman G, Montrone C, Theis FJ (2010) PhenomiR: a knowledgebase for microRNA expression in diseases and biological processes. Genome Biol 11(1):R6

    Article  Google Scholar 

  20. Nam S, Kim B, Shin S, Lee S (2007) miRGator: an integrated system for functional annotation of microRNAs. Nucleic Acids Res 36(Suppl_1):D159–D164

    Article  Google Scholar 

  21. Megraw M, Sethupathy P, Corda B, Hatzigeorgiou AG (2007) miRGen: a database for the study of animal microRNA genomic organization and function. Nucleic Acids Res 35(suppl 1):D149–D155

    Article  CAS  Google Scholar 

  22. Shahi P, Loukianiouk S, Bohne-Lang A, Kenzelmann M, Küffer S, Maertens S, Eils R, Gröne HJ, Gretz N, Brors B (2006) Argonaute—a database for gene regulation by mammalian microRNAs. Nucleic Acids Res 34(Suppl 1):D115–D118

    Article  CAS  Google Scholar 

  23. Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T (2009) miRecords: an integrated resource for microRNA–target interactions. Nucleic Acids Res 37(Suppl 1):D105–D110

    Article  CAS  Google Scholar 

  24. Vergoulis T, Vlachos IS, Alexiou P, Georgakilas G, Maragkakis M, Reczko M, Gerangelos S, Koziris N, Dalamagas T, Hatzigeorgiou AG (2012) TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res 40(D1):D222–D229

    Article  CAS  Google Scholar 

  25. Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11(4):252–263

    Article  CAS  Google Scholar 

  26. Lin C, Zong J, Lin W, Wang M, Xu Y, Zhou R, Lin S, Guo Q, Chen H, Ye Y et al (2018) EBV-miR-BART8-3p induces epithelial-mesenchymal transition and promotes metastasis of nasopharyngeal carcinoma cells through activating NFκb and Erk1/2 pathways. J Exp Clin Cancer Res 37(1):283

    Article  CAS  Google Scholar 

  27. SRA Toolkit Development Team (2019) SRA Tools. https://github.com/ ncbi/sra-tools

  28. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10–12

    Article  Google Scholar 

  29. Andrews S et al. (2010) FastQC: a quality control tool for high throughput sequence data

    Google Scholar 

  30. Martin M (2019) Cutadapt quality trimming algorithm. https://cutadapt.readthedocs.io/en/stable/algorithms.html#quality-trimming-algorithm

  31. Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) Mirbase: from microrna sequences to function. Nucleic Acids Res 47(D1):D155–D162

    Article  CAS  Google Scholar 

  32. Frankish A, Diekhans M, Ferreira AM, Johnson R, Jungreis I, Loveland J, Mudge JM, Sisu C, Wright J, Armstrong J et al (2019) Gencode reference annotation for the human and mouse genomes. Nucleic Acids Res 47(D1):D766–D773

    Article  CAS  Google Scholar 

  33. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360

    Article  CAS  Google Scholar 

  34. Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930

    Article  CAS  Google Scholar 

  35. Pertea G (2019) GFF/GTF utility providing format conversions, region filtering, FASTA sequence extraction and more. https://github.com/gpertea/gffread

  36. R Development Core Team R, et al (2011) R: A language and environment for statistical computing

    Google Scholar 

  37. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    Article  CAS  Google Scholar 

  38. Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11(3):R25

    Article  Google Scholar 

  39. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  Google Scholar 

  40. Calura E, Martini P, Sales G, Beltrame L, Chiorino G, D’Incalci M, Marchini S, Romualdi C (2014) Wiring miRNAs to pathways: a topological approach to integrate miRNA and mRNA expression profiles. Nucleic Acids Res 42(11):e96–e96

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the “My First AIRC grant” provided by Italian Association for Cancer Research to Enrica Calura (MFAG 2019, number 23522).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Sales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sales, G., Calura, E. (2021). Micro-RNA Quantification, Target Gene Identification, and Pathway Analysis. In: Picardi, E. (eds) RNA Bioinformatics. Methods in Molecular Biology, vol 2284. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1307-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1307-8_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1306-1

  • Online ISBN: 978-1-0716-1307-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics