Skip to main content

GPCR Signaling Regulation in Dictyostelium Chemotaxis

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2274))

Abstract

GPCR signaling is the most prevailing molecular mechanism for detecting ambient signals in eukaryotes. Chemotactic cells use GPCR signaling to process chemical cues for directional migration over a broad concentration range and with high sensitivity. Dictyostelium discoideum is a classical model, in which the molecular mechanism underlying eukaryotic chemotaxis has been well studied. Here, we describe protocols to evaluate the spatiotemporal chemotactic responses of Dictyostelium discoideum by different microscopic observations combined with biochemical assays. First, two different chemotaxis assays are presented to measure the dynamic concentration ranges for different cell strains or chemotactic parameters. Next, live-cell imaging and biochemical assays are provided to detect the activities of GPCR and its partner heterotrimeric G proteins upon chemoattractant stimulation. Finally, a method for detecting how a cell deciphers chemical gradients is described.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650

    Article  CAS  Google Scholar 

  2. Wettschureck N, Offermanns S (2005) Mammalian G proteins and their cell type specific functions. Physiol Rev 85:1159–1204

    Article  CAS  Google Scholar 

  3. Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56:615–649

    Article  CAS  Google Scholar 

  4. Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294:1299–1304

    Article  CAS  Google Scholar 

  5. Syrovatkina V, Alegre KO, Dey R, Huang X-Y (2016) Regulation, signaling, and physiological functions of G proteins. J Mol Biol 428:3850–3868

    Article  CAS  Google Scholar 

  6. Escribá PV, Wedegaertner PB, Goñi FM, Vögler O (2007) Lipid-protein interactions in GPCR-associated signaling. Biochim Biophys Acta 1768:836–852

    Article  Google Scholar 

  7. Escribá PV, González-Ros JM, Goñi FM, Kinnunen PK, Vigh L, Sánchez-Magraner L, Fernández AM, Busquets X, Horváth I, Barceló-Coblijn G (2008) Membranes: a meeting point for lipids, proteins, and therapies. J Cell Mol Med 12:829–875

    Article  Google Scholar 

  8. Kamp M, Liu Y, Kortholt A (2016) Function and regulation of heterotrimeric G proteins during chemotaxis. Int J Mol Sci 17:E90

    Article  Google Scholar 

  9. Theveneau E, Mayor R (2012) Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration. Dev Biol 366:34–54

    Article  CAS  Google Scholar 

  10. Friedle P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration, and cancer. Nat Rev Mol Cell Biol 10:445–457

    Article  Google Scholar 

  11. Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175

    Article  CAS  Google Scholar 

  12. Marín O, Valiente M, Ge X, Tsai LH (2010) Guiding neuronal cell migrations. Cold Spring Harb Perspect Biol 2:a001834

    Article  Google Scholar 

  13. Zigmond SH (1977) Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J Cell Biol 75:606–616

    Article  CAS  Google Scholar 

  14. Fisher PR, Merkl R, Gerisch G (1989) Quantitative analysis of cell motility and chemotaxis in Dictyostelium discoideum by using an image processing system and a novel chemotaxis chamber providing stationary chemical gradients. J Cell Biol 108:973–984

    Article  CAS  Google Scholar 

  15. Artemenko Y, Lampert TJ, Devreotes PN (2014) Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Cell Mol Life Sci 71:3711–3747

    Article  CAS  Google Scholar 

  16. Nicholos JM, Veltman D, Kay RR (2015) Chemotaxis of a model organism: progress with Dictyostelium. Curr Opin Cell Biol 36:7–12

    Article  Google Scholar 

  17. Devreotes PN, Bhattacharya S, Edwards M, Iglesias PA, Lampert T, Miao Y (2017) Excitable signal transduction networks in directed cell migration. Annu Rev Cell Dev Biol 6:103–125

    Article  Google Scholar 

  18. Kamimura Y, Tang M, Devreotes P (2009) Assays for chemotaxis and chemoattractant-stimulated TORC2 activation and PKB substrate phosphorylation in Dictyostelium. Methods Mol Biol 571:255–270

    Article  CAS  Google Scholar 

  19. Muramoto T, Iriki H, Watanabe J, Kawata T (2019) Recent advances in CRISPR/Cas9-mediated genome editing in Dictyostelium. Cells 8:E46

    Article  Google Scholar 

  20. Kim J-Y, Soede RDM, Schaap P, Valkema R, Borleis JA, Van Haastert PJM, Devreotes PN, Hereld D (1997) Phosphorylation of chemoattractant receptors is not essential for chemotaxis or termination of G protein-mediated responses. J Biol Chem 272:27313–27318

    Article  CAS  Google Scholar 

  21. Gundersen RE, Devreotes P (1990) In vivo receptor-mediated phosphorylation of a G protein in Dictyostelium. Science 248:591–593

    Article  CAS  Google Scholar 

  22. Chen M-Y, Devreotes PN, Gundersen RE (1994) Serine 113 is the site of receptor-mediated phosphorylation of the Dictyostelium G protein α-subunit, Gα2. J Biol Chem 269:20925–20930

    Article  CAS  Google Scholar 

  23. Kamimura Y, Miyanaga Y, Ueda M (2016) Heterotrimeric G-protein shuttling via Gip1 extends the dynamic range of eukaryotic chemotaxis. Proc Natl Acad Sci U S A 113:4356–4361

    Article  CAS  Google Scholar 

  24. Miyagawa T, Koteishi H, Kamimura Y, Miyanaga Y, Takeshita K, Nakagawa A, Ueda M (2018) Structural basis of Gip1 for cytosolic sequestration of G protein in wide-range chemotaxis. Nat Commun 9:4635

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank NBRP-slime mold for distributing the bioresources described in this chapter. This work was supported by grants from JSPS KAKENHI Grant Numbers 17K07396 and 20K06631 to Y.K, and 19H00982 to M.U. This research was supported in part by AMED-CREST from Japan Agency for Medical Research and Development, AMED JP20gm0910001 to M.U.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoichiro Kamimura or Masahiro Ueda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kamimura, Y., Ueda, M. (2021). GPCR Signaling Regulation in Dictyostelium Chemotaxis. In: Kim, SB. (eds) Live Cell Imaging. Methods in Molecular Biology, vol 2274. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1258-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1258-3_27

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1257-6

  • Online ISBN: 978-1-0716-1258-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics